ﻻ يوجد ملخص باللغة العربية
Using new as well as known results on dimerized quantum spin chains with frustration, we are able to infer some properties on the low-energy spectrum of the O(3) Nonlinear Sigma Model with a topological theta-term. In particular, for sufficiently strong coupling, we find a range of values of theta where a singlet bound state is stable under the triplet continuum. On the basis of these results, we propose a new renormalization group flow diagram for the Nonlinear Sigma Model with theta-term.
In this paper and its sequel, we construct topologically invariant defects in two-dimensional classical lattice models and quantum spin chains. We show how defect lines commute with the transfer matrix/Hamiltonian when they obey the defect commutatio
We consider a noncompact lattice formulation of the three-dimensional electrodynamics with $N$-component complex scalar fields, i.e., the lattice Abelian-Higgs model with noncompact gauge fields. For any $Nge 2$, the phase diagram shows three phases
We introduce and analyze a quantum spin/Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit, b
A lattice calculation of the pi-N sigma term is described using dynamical staggered fermions. Preliminary results give a sea term comparable in magnitude to the valence term.
We numerically study the phase structure of the CP(1) model in the presence of a topological $theta$-term, a regime afflicted by the sign problem for conventional lattice Monte Carlo simulations. Using a bond-weighted Tensor Renormalization Group met