ﻻ يوجد ملخص باللغة العربية
We study a four-dimensional $U(1)$ gauge theory with the $theta$ angle, which was originally proposed by Cardy and Rabinovici. It is known that the model has the rich phase diagram thanks to the presence of both electrically and magnetically charged particles. We discuss the topological nature of the oblique confinement phase of the model at $theta=pi$, and show how its appearance can be consistent with the anomaly constraint. We also construct the $SL(2,mathbb{Z})$ self-dual theory out of the Cardy-Rabinovici model by gauging a part of its one-form symmetry. This self-duality has a mixed t Hooft anomaly with gravity, and its implications on the phase diagram is uncovered. As the model shares the same global symmetry and t Hooft anomaly with those of $SU(N)$ Yang-Mills theory, studying its topological aspects would provide us more hints to explore possible dynamics of non-Abelian gauge theories with nonzero $theta$ angles.
We consider a noncompact lattice formulation of the three-dimensional electrodynamics with $N$-component complex scalar fields, i.e., the lattice Abelian-Higgs model with noncompact gauge fields. For any $Nge 2$, the phase diagram shows three phases
We discuss a general framework for the realization of a family of abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable to quantum simulations. Withi
We review results concerning the theta dependence of 4D SU(N) gauge theories and QCD, where theta is the coefficient of the CP-violating topological term in the Lagrangian. In particular, we discuss theta dependence in the large-N limit. Most resul
The postulate of gauge invariance in nature does not lend itself directly to implementations of lattice gauge theories in modern setups of quantum synthetic matter. Unavoidable gauge-breaking errors in such devices require gauge invariance to be enfo