ترغب بنشر مسار تعليمي؟ اضغط هنا

Fairness Perception from a Network-Centric Perspective

38   0   0.0 ( 0 )
 نشر من قبل Farzan Masrour
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Algorithmic fairness is a major concern in recent years as the influence of machine learning algorithms becomes more widespread. In this paper, we investigate the issue of algorithmic fairness from a network-centric perspective. Specifically, we introduce a novel yet intuitive function known as network-centric fairness perception and provide an axiomatic approach to analyze its properties. Using a peer-review network as case study, we also examine its utility in terms of assessing the perception of fairness in paper acceptance decisions. We show how the function can be extended to a group fairness metric known as fairness visibility and demonstrate its relationship to demographic parity. We also illustrate a potential pitfall of the fairness visibility measure that can be exploited to mislead individuals into perceiving that the algorithmic decisions are fair. We demonstrate how the problem can be alleviated by increasing the local neighborhood size of the fairness perception function.



قيم البحث

اقرأ أيضاً

As one of the most important and famous applications of blockchain technology, cryptocurrency has attracted extensive attention recently. Empowered by blockchain technology, all the transaction records of cryptocurrencies are irreversible and recorde d in the blocks. These transaction records containing rich information and complete traces of financial activities are publicly accessible, thus providing researchers with unprecedented opportunities for data mining and knowledge discovery in this area. Networks are a general language for describing interacting systems in the real world, and a considerable part of existing work on cryptocurrency transactions is studied from a network perspective. This survey aims to analyze and summarize the existing literature on analyzing and understanding cryptocurrency transactions from a network perspective. Aiming to provide a systematic guideline for researchers and engineers, we present the background information of cryptocurrency transaction network analysis and review existing research in terms of three aspects, i.e., network modeling, network profiling, and network-based detection. For each aspect, we introduce the research issues, summarize the methods, and discuss the results and findings given in the literature. Furthermore, we present the main challenges and several future directions in this area.
Mobile sensing is an emerging technology that utilizes agent-participatory data for decision making or state estimation, including multimedia applications. This article investigates the structure of mobile sensing schemes and introduces crowdsourcing methods for mobile sensing. Inspired by social network, one can establish trust among participatory agents to leverage the wisdom of crowds for mobile sensing. A prototype of social network inspired mobile multimedia and sensing application is presented for illustrative purpose. Numerical experiments on real-world datasets show improved performance of mobile sensing via crowdsourcing. Challenges for mobile sensing with respect to Internet layers are discussed.
Community detection, aiming to group the graph nodes into clusters with dense inner-connection, is a fundamental graph mining task. Recently, it has been studied on the heterogeneous graph, which contains multiple types of nodes and edges, posing gre at challenges for modeling the high-order relationship between nodes. With the surge of graph embedding mechanism, it has also been adopted to community detection. A remarkable group of works use the meta-path to capture the high-order relationship between nodes and embed them into nodes embedding to facilitate community detection. However, defining meaningful meta-paths requires much domain knowledge, which largely limits their applications, especially on schema-rich heterogeneous graphs like knowledge graphs. To alleviate this issue, in this paper, we propose to exploit the context path to capture the high-order relationship between nodes, and build a Context Path-based Graph Neural Network (CP-GNN) model. It recursively embeds the high-order relationship between nodes into the node embedding with attention mechanisms to discriminate the importance of different relationships. By maximizing the expectation of the co-occurrence of nodes connected by context paths, the model can learn the nodes embeddings that both well preserve the high-order relationship between nodes and are helpful for community detection. Extensive experimental results on four real-world datasets show that CP-GNN outperforms the state-of-the-art community detection methods.
Training datasets for machine learning often have some form of missingness. For example, to learn a model for deciding whom to give a loan, the available training data includes individuals who were given a loan in the past, but not those who were not . This missingness, if ignored, nullifies any fairness guarantee of the training procedure when the model is deployed. Using causal graphs, we characterize the missingness mechanisms in different real-world scenarios. We show conditions under which various distributions, used in popular fairness algorithms, can or can not be recovered from the training data. Our theoretical results imply that many of these algorithms can not guarantee fairness in practice. Modeling missingness also helps to identify correct design principles for fair algorithms. For example, in multi-stage settings where decisions are made in multiple screening rounds, we use our framework to derive the minimal distributions required to design a fair algorithm. Our proposed algorithm decentralizes the decision-making process and still achieves similar performance to the optimal algorithm that requires centralization and non-recoverable distributions.
Facebook News Feed personalization algorithm has a significant impact, on a daily basis, on the lifestyle, mood and opinion of millions of Internet users. Nonetheless, the behavior of such algorithm lacks transparency, motivating measurements, modeli ng and analysis in order to understand and improve its properties. In this paper, we propose a reproducible methodology encompassing measurements, an analytical model and a fairness-based News Feed design. The model leverages the versatility and analytical tractability of time-to-live (TTL) counters to capture the visibility and occupancy of publishers over a News Feed. Measurements are used to parameterize and to validate the expressive power of the proposed model. Then, we conduct a what-if analysis to assess the visibility and occupancy bias incurred by users against a baseline derived from the model. Our results indicate that a significant bias exists and it is more prominent at the top position of the News Feed. In addition, we find that the bias is non-negligible even for users that are deliberately set as neutral with respect to their political views, motivating the proposal of a novel and more transparent fairness-based News Feed design.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا