ﻻ يوجد ملخص باللغة العربية
Mobile sensing is an emerging technology that utilizes agent-participatory data for decision making or state estimation, including multimedia applications. This article investigates the structure of mobile sensing schemes and introduces crowdsourcing methods for mobile sensing. Inspired by social network, one can establish trust among participatory agents to leverage the wisdom of crowds for mobile sensing. A prototype of social network inspired mobile multimedia and sensing application is presented for illustrative purpose. Numerical experiments on real-world datasets show improved performance of mobile sensing via crowdsourcing. Challenges for mobile sensing with respect to Internet layers are discussed.
Worker recruitment is a crucial research problem in Mobile Crowd Sensing (MCS). While previous studies rely on a specified platform with a pre-assumed large user pool, this paper leverages the influenced propagation on the social network to assist th
In this paper, we investigate the problem of (k,r)-core which intends to find cohesive subgraphs on social networks considering both user engagement and similarity perspectives. In particular, we adopt the popular concept of k-core to guarantee the e
While liking or upvoting a post on a mobile app is easy to do, replying with a written note is much more difficult, due to both the cognitive load of coming up with a meaningful response as well as the mechanics of entering the text. Here we present
Mobile crowdsensing (MCS) is an emerging sensing data collection pattern with scalability, low deployment cost, and distributed characteristics. Traditional MCS systems suffer from privacy concerns and fair reward distribution. Moreover, existing pri
Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging wo