ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonnegative Spectral Analysis with Adaptive Graph and $L_{2,0}$-Norm Regularization for Unsupervised Feature Selection

57   0   0.0 ( 0 )
 نشر من قبل Zhenzhen Sun
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Feature selection is used to reduce feature dimension while maintain models performance, which has been an important data preprocessing in many fields. Since obtaining annotated data is laborious or even infeasible in many cases, unsupervised feature selection is more practical in reality. Although a lots of methods have been proposed, these methods select features independently, thus it is no guarantee that the group of selected features is optimal. Whats more, the number of selected features must be tuned carefully to get a satisfactory result. In this paper, we propose a novel unsupervised feature selection method which incorporate spectral analysis with a $l_{2,0}$-norm regularized term. After optimization, a group of optimal features will be selected, and the number of selected features will be determined automatically. Whats more, a nonnegative constraint with respect to the class indicators is imposed to learn more accurate cluster labels, and a graph regularized term is added to learn the similarity matrix adaptively. An efficient and simple iterative algorithm is designed to optimize the proposed problem. Experiments on six different benchmark data sets validate the effectiveness of the proposed approach.

قيم البحث

اقرأ أيضاً

Feature selection is an important data pre-processing in data mining and machine learning, which can reduce feature size without deteriorating models performance. Recently, sparse regression based feature selection methods have received considerable attention due to their good performance. However, because the $l_{2,0}$-norm regularization term is non-convex, this problem is very hard to solve. In this paper, unlike most of the other methods which only solve the approximate problem, a novel method based on homotopy iterative hard threshold (HIHT) is proposed to solve the $l_{2,0}$-norm regularization least square problem directly for multi-class feature selection, which can produce exact row-sparsity solution for the weights matrix. Whatmore, in order to reduce the computational time of HIHT, an acceleration version of HIHT (AHIHT) is derived. Extensive experiments on eight biological datasets show that the proposed method can achieve higher classification accuracy (ACC) with fewest number of selected features (No.fea) comparing with the approximate convex counterparts and state-of-the-art feature selection methods. The robustness of classification accuracy to the regularization parameter and the number of selected feature are also exhibited.
Feature selection is a prevalent data preprocessing paradigm for various learning tasks. Due to the expensive cost of acquiring supervision information, unsupervised feature selection sparks great interests recently. However, existing unsupervised fe ature selection algorithms do not have fairness considerations and suffer from a high risk of amplifying discrimination by selecting features that are over associated with protected attributes such as gender, race, and ethnicity. In this paper, we make an initial investigation of the fairness-aware unsupervised feature selection problem and develop a principled framework, which leverages kernel alignment to find a subset of high-quality features that can best preserve the information in the original feature space while being minimally correlated with protected attributes. Specifically, different from the mainstream in-processing debiasing methods, our proposed framework can be regarded as a model-agnostic debiasing strategy that eliminates biases and discrimination before downstream learning algorithms are involved. Experimental results on multiple real-world datasets demonstrate that our framework achieves a good trade-off between utility maximization and fairness promotion.
107 - Yihan Gao , Chao Zhang , Jian Peng 2018
Learning distributed representations for nodes in graphs is a crucial primitive in network analysis with a wide spectrum of applications. Linear graph embedding methods learn such representations by optimizing the likelihood of both positive and nega tive edges while constraining the dimension of the embedding vectors. We argue that the generalization performance of these methods is not due to the dimensionality constraint as commonly believed, but rather the small norm of embedding vectors. Both theoretical and empirical evidence are provided to support this argument: (a) we prove that the generalization error of these methods can be bounded by limiting the norm of vectors, regardless of the embedding dimension; (b) we show that the generalization performance of linear graph embedding methods is correlated with the norm of embedding vectors, which is small due to the early stopping of SGD and the vanishing gradients. We performed extensive experiments to validate our analysis and showcased the importance of proper norm regularization in practice.
There exist many high-dimensional data in real-world applications such as biology, computer vision, and social networks. Feature selection approaches are devised to confront with high-dimensional data challenges with the aim of efficient learning tec hnologies as well as reduction of models complexity. Due to the hardship of labeling on these datasets, there are a variety of approaches on feature selection process in an unsupervised setting by considering some important characteristics of data. In this paper, we introduce a novel unsupervised feature selection approach by applying dictionary learning ideas in a low-rank representation. Dictionary learning in a low-rank representation not only enables us to provide a new representation, but it also maintains feature correlation. Then, spectral analysis is employed to preserve sample similarities. Finally, a unified objective function for unsupervised feature selection is proposed in a sparse way by an $ell_{2,1}$-norm regularization. Furthermore, an efficient numerical algorithm is designed to solve the corresponding optimization problem. We demonstrate the performance of the proposed method based on a variety of standard datasets from different applied domains. Our experimental findings reveal that the proposed method outperforms the state-of-the-art algorithm.
Feature selection is a core area of data mining with a recent innovation of graph-driven unsupervised feature selection for linked data. In this setting we have a dataset $mathbf{Y}$ consisting of $n$ instances each with $m$ features and a correspond ing $n$ node graph (whose adjacency matrix is $mathbf{A}$) with an edge indicating that the two instances are similar. Existing efforts for unsupervised feature selection on attributed networks have explored either directly regenerating the links by solving for $f$ such that $f(mathbf{y}_i,mathbf{y}_j) approx mathbf{A}_{i,j}$ or finding community structure in $mathbf{A}$ and using the features in $mathbf{Y}$ to predict these communities. However, graph-driven unsupervised feature selection remains an understudied area with respect to exploring more complex guidance. Here we take the novel approach of first building a block model on the graph and then using the block model for feature selection. That is, we discover $mathbf{F}mathbf{M}mathbf{F}^T approx mathbf{A}$ and then find a subset of features $mathcal{S}$ that induces another graph to preserve both $mathbf{F}$ and $mathbf{M}$. We call our approach Block Model Guided Unsupervised Feature Selection (BMGUFS). Experimental results show that our method outperforms the state of the art on several real-world public datasets in finding high-quality features for clustering.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا