ﻻ يوجد ملخص باللغة العربية
There exist many high-dimensional data in real-world applications such as biology, computer vision, and social networks. Feature selection approaches are devised to confront with high-dimensional data challenges with the aim of efficient learning technologies as well as reduction of models complexity. Due to the hardship of labeling on these datasets, there are a variety of approaches on feature selection process in an unsupervised setting by considering some important characteristics of data. In this paper, we introduce a novel unsupervised feature selection approach by applying dictionary learning ideas in a low-rank representation. Dictionary learning in a low-rank representation not only enables us to provide a new representation, but it also maintains feature correlation. Then, spectral analysis is employed to preserve sample similarities. Finally, a unified objective function for unsupervised feature selection is proposed in a sparse way by an $ell_{2,1}$-norm regularization. Furthermore, an efficient numerical algorithm is designed to solve the corresponding optimization problem. We demonstrate the performance of the proposed method based on a variety of standard datasets from different applied domains. Our experimental findings reveal that the proposed method outperforms the state-of-the-art algorithm.
Feature selection is a prevalent data preprocessing paradigm for various learning tasks. Due to the expensive cost of acquiring supervision information, unsupervised feature selection sparks great interests recently. However, existing unsupervised fe
Feature selection is a core area of data mining with a recent innovation of graph-driven unsupervised feature selection for linked data. In this setting we have a dataset $mathbf{Y}$ consisting of $n$ instances each with $m$ features and a correspond
The laborious process of labeling data often bottlenecks projects that aim to leverage the power of supervised machine learning. Active Learning (AL) has been established as a technique to ameliorate this condition through an iterative framework that
In medical diagnosis, physicians predict the state of a patient by checking measurements (features) obtained from a sequence of tests, e.g., blood test, urine test, followed by invasive tests. As tests are often costly, one would like to obtain only
We examine the use of linear and non-linear dimensionality reduction algorithms for extracting low-rank feature representations for speech emotion recognition. Two feature sets are used, one based on low-level descriptors and their aggregations (IS10