ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-rank Dictionary Learning for Unsupervised Feature Selection

70   0   0.0 ( 0 )
 نشر من قبل Mohsen Ghassemi Parsa
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

There exist many high-dimensional data in real-world applications such as biology, computer vision, and social networks. Feature selection approaches are devised to confront with high-dimensional data challenges with the aim of efficient learning technologies as well as reduction of models complexity. Due to the hardship of labeling on these datasets, there are a variety of approaches on feature selection process in an unsupervised setting by considering some important characteristics of data. In this paper, we introduce a novel unsupervised feature selection approach by applying dictionary learning ideas in a low-rank representation. Dictionary learning in a low-rank representation not only enables us to provide a new representation, but it also maintains feature correlation. Then, spectral analysis is employed to preserve sample similarities. Finally, a unified objective function for unsupervised feature selection is proposed in a sparse way by an $ell_{2,1}$-norm regularization. Furthermore, an efficient numerical algorithm is designed to solve the corresponding optimization problem. We demonstrate the performance of the proposed method based on a variety of standard datasets from different applied domains. Our experimental findings reveal that the proposed method outperforms the state-of-the-art algorithm.

قيم البحث

اقرأ أيضاً

Feature selection is a prevalent data preprocessing paradigm for various learning tasks. Due to the expensive cost of acquiring supervision information, unsupervised feature selection sparks great interests recently. However, existing unsupervised fe ature selection algorithms do not have fairness considerations and suffer from a high risk of amplifying discrimination by selecting features that are over associated with protected attributes such as gender, race, and ethnicity. In this paper, we make an initial investigation of the fairness-aware unsupervised feature selection problem and develop a principled framework, which leverages kernel alignment to find a subset of high-quality features that can best preserve the information in the original feature space while being minimally correlated with protected attributes. Specifically, different from the mainstream in-processing debiasing methods, our proposed framework can be regarded as a model-agnostic debiasing strategy that eliminates biases and discrimination before downstream learning algorithms are involved. Experimental results on multiple real-world datasets demonstrate that our framework achieves a good trade-off between utility maximization and fairness promotion.
Feature selection is a core area of data mining with a recent innovation of graph-driven unsupervised feature selection for linked data. In this setting we have a dataset $mathbf{Y}$ consisting of $n$ instances each with $m$ features and a correspond ing $n$ node graph (whose adjacency matrix is $mathbf{A}$) with an edge indicating that the two instances are similar. Existing efforts for unsupervised feature selection on attributed networks have explored either directly regenerating the links by solving for $f$ such that $f(mathbf{y}_i,mathbf{y}_j) approx mathbf{A}_{i,j}$ or finding community structure in $mathbf{A}$ and using the features in $mathbf{Y}$ to predict these communities. However, graph-driven unsupervised feature selection remains an understudied area with respect to exploring more complex guidance. Here we take the novel approach of first building a block model on the graph and then using the block model for feature selection. That is, we discover $mathbf{F}mathbf{M}mathbf{F}^T approx mathbf{A}$ and then find a subset of features $mathcal{S}$ that induces another graph to preserve both $mathbf{F}$ and $mathbf{M}$. We call our approach Block Model Guided Unsupervised Feature Selection (BMGUFS). Experimental results show that our method outperforms the state of the art on several real-world public datasets in finding high-quality features for clustering.
The laborious process of labeling data often bottlenecks projects that aim to leverage the power of supervised machine learning. Active Learning (AL) has been established as a technique to ameliorate this condition through an iterative framework that queries a human annotator for labels of instances with the most uncertain class assignment. Via this mechanism, AL produces a binary classifier trained on less labeled data but with little, if any, loss in predictive performance. Despite its advantages, AL can have difficulty with class-imbalanced datasets and results in an inefficient labeling process. To address these drawbacks, we investigate our unsupervised instance selection (UNISEL) technique followed by a Random Forest (RF) classifier on 10 outlier detection datasets under low-label conditions. These results are compared to AL performed on the same datasets. Further, we investigate the combination of UNISEL and AL. Results indicate that UNISEL followed by an RF performs comparably to AL with an RF and that the combination of UNISEL and AL demonstrates superior performance. The practical implications of these findings in terms of time savings and generalizability afforded by UNISEL are discussed.
In medical diagnosis, physicians predict the state of a patient by checking measurements (features) obtained from a sequence of tests, e.g., blood test, urine test, followed by invasive tests. As tests are often costly, one would like to obtain only those features (tests) that can establish the presence or absence of the state conclusively. Another aspect of medical diagnosis is that we are often faced with unsupervised prediction tasks as the true state of the patients may not be known. Motivated by such medical diagnosis problems, we consider a {it Cost-Sensitive Medical Diagnosis} (CSMD) problem, where the true state of patients is unknown. We formulate the CSMD problem as a feature selection problem where each test gives a feature that can be used in a prediction model. Our objective is to learn strategies for selecting the features that give the best trade-off between accuracy and costs. We exploit the `Weak Dominance property of problem to develop online algorithms that identify a set of features which provides an `optimal trade-off between cost and accuracy of prediction without requiring to know the true state of the medical condition. Our empirical results validate the performance of our algorithms on problem instances generated from real-world datasets.
We examine the use of linear and non-linear dimensionality reduction algorithms for extracting low-rank feature representations for speech emotion recognition. Two feature sets are used, one based on low-level descriptors and their aggregations (IS10 ) and one modeling recurrence dynamics of speech (RQA), as well as their fusion. We report speech emotion recognition (SER) results for learned representations on two databases using different classification methods. Classification with low-dimensional representations yields performance improvement in a variety of settings. This indicates that dimensionality reduction is an effective way to combat the curse of dimensionality for SER. Visualization of features in two dimensions provides insight into discriminatory abilities of reduced feature sets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا