ﻻ يوجد ملخص باللغة العربية
We present our ongoing work on understanding the limitations of graph convolutional networks (GCNs) as well as our work on generalizations of graph convolutions for representing more complex node attribute dependencies. Based on an analysis of GCNs with the help of the corresponding computation graphs, we propose a generalization of existing GCNs where the aggregation operations are (a) determined by structural properties of the local neighborhood graphs and (b) not restricted to weighted averages. We show that the proposed approach is strictly more expressive while requiring only a modest increase in the number of parameters and computations. We also show that the proposed generalization is identical to standard convolutional layers when applied to regular grid graphs.
In this paper, we study the robustness of graph convolutional networks (GCNs). Despite the good performance of GCNs on graph semi-supervised learning tasks, previous works have shown that the original GCNs are very unstable to adversarial perturbatio
Graphs have been widely adopted to denote structural connections between entities. The relations are in many cases heterogeneous, but entangled together and denoted merely as a single edge between a pair of nodes. For example, in a social network gra
This paper introduces a generalization of Convolutional Neural Networks (CNNs) from low-dimensional grid data, such as images, to graph-structured data. We propose a novel spatial convolution utilizing a random walk to uncover the relations within th
Graph Neural Networks (GNNs) have achieved tremendous success in various real-world applications due to their strong ability in graph representation learning. GNNs explore the graph structure and node features by aggregating and transforming informat
Inspired by convolutional neural networks on 1D and 2D data, graph convolutional neural networks (GCNNs) have been developed for various learning tasks on graph data, and have shown superior performance on real-world datasets. Despite their success,