ﻻ يوجد ملخص باللغة العربية
Infrared target tracking plays an important role in both civil and military fields. The main challenges in designing a robust and high-precision tracker for infrared sequences include overlap, occlusion and appearance change. To this end, this paper proposes an infrared target tracker based on proximal robust principal component analysis method. Firstly, the observation matrix is decomposed into a sparse occlusion matrix and a low-rank target matrix, and the constraint optimization is carried out with an approaching proximal norm which is better than L1-norm. To solve this convex optimization problem, Alternating Direction Method of Multipliers (ADMM) is employed to estimate the variables alternately. Finally, the framework of particle filter with model update strategy is exploited to locate the target. Through a series of experiments on real infrared target sequences, the effectiveness and robustness of our algorithm are proved.
Principal component analysis (PCA) is recognised as a quintessential data analysis technique when it comes to describing linear relationships between the features of a dataset. However, the well-known sensitivity of PCA to non-Gaussian samples and/or
Principal Component Analysis (PCA) finds a linear mapping and maximizes the variance of the data which makes PCA sensitive to outliers and may cause wrong eigendirection. In this paper, we propose techniques to solve this problem; we use the data-cen
Cryo-electron microscopy nowadays often requires the analysis of hundreds of thousands of 2D images as large as a few hundred pixels in each direction. Here we introduce an algorithm that efficiently and accurately performs principal component analys
Principal Component Analysis (PCA) is a common multivariate statistical analysis method, and Probabilistic Principal Component Analysis (PPCA) is its probabilistic reformulation under the framework of Gaussian latent variable model. To improve the ro
Traditional load analysis is facing challenges with the new electricity usage patterns due to demand response as well as increasing deployment of distributed generations, including photovoltaics (PV), electric vehicles (EV), and energy storage system