ﻻ يوجد ملخص باللغة العربية
Principal component analysis (PCA) is recognised as a quintessential data analysis technique when it comes to describing linear relationships between the features of a dataset. However, the well-known sensitivity of PCA to non-Gaussian samples and/or outliers often makes it unreliable in practice. To this end, a robust formulation of PCA is derived based on the maximum correntropy criterion (MCC) so as to maximise the expected likelihood of Gaussian distributed reconstruction errors. In this way, the proposed solution reduces to a generalised power iteration, whereby: (i) robust estimates of the principal components are obtained even in the presence of outliers; (ii) the number of principal components need not be specified in advance; and (iii) the entire set of principal components can be obtained, unlike existing approaches. The advantages of the proposed maximum correntropy power iteration (MCPI) are demonstrated through an intuitive numerical example.
The robust PCA of covariance matrices plays an essential role when isolating key explanatory features. The currently available methods for performing such a low-rank plus sparse decomposition are matrix specific, meaning, those algorithms must re-run
The unscented transformation (UT) is an efficient method to solve the state estimation problem for a non-linear dynamic system, utilizing a derivative-free higher-order approximation by approximating a Gaussian distribution rather than approximating
Robust principal component analysis (RPCA) is a widely used tool for dimension reduction. In this work, we propose a novel non-convex algorithm, coined Iterated Robust CUR (IRCUR), for solving RPCA problems, which dramatically improves the computatio
Infrared target tracking plays an important role in both civil and military fields. The main challenges in designing a robust and high-precision tracker for infrared sequences include overlap, occlusion and appearance change. To this end, this paper
Principal Component Analysis (PCA) finds a linear mapping and maximizes the variance of the data which makes PCA sensitive to outliers and may cause wrong eigendirection. In this paper, we propose techniques to solve this problem; we use the data-cen