ترغب بنشر مسار تعليمي؟ اضغط هنا

Submodular Load Clustering with Robust Principal Component Analysis

275   0   0.0 ( 0 )
 نشر من قبل Yishen Wang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Traditional load analysis is facing challenges with the new electricity usage patterns due to demand response as well as increasing deployment of distributed generations, including photovoltaics (PV), electric vehicles (EV), and energy storage systems (ESS). At the transmission system, despite of irregular load behaviors at different areas, highly aggregated load shapes still share similar characteristics. Load clustering is to discover such intrinsic patterns and provide useful information to other load applications, such as load forecasting and load modeling. This paper proposes an efficient submodular load clustering method for transmission-level load areas. Robust principal component analysis (R-PCA) firstly decomposes the annual load profiles into low-rank components and sparse components to extract key features. A novel submodular cluster center selection technique is then applied to determine the optimal cluster centers through constructed similarity graph. Following the selection results, load areas are efficiently assigned to different clusters for further load analysis and applications. Numerical results obtained from PJM load demonstrate the effectiveness of the proposed approach.

قيم البحث

اقرأ أيضاً

We consider the problem of principal component analysis from a data matrix where the entries of each column have undergone some unknown permutation, termed Unlabeled Principal Component Analysis (UPCA). Using algebraic geometry, we establish that for generic enough data, and up to a permutation of the coordinates of the ambient space, there is a unique subspace of minimal dimension that explains the data. We show that a permutation-invariant system of polynomial equations has finitely many solutions, with each solution corresponding to a row permutation of the ground-truth data matrix. Allowing for missing entries on top of permutations leads to the problem of unlabeled matrix completion, for which we give theoretical results of similar flavor. We also propose a two-stage algorithmic pipeline for UPCA suitable for the practically relevant case where only a fraction of the data has been permuted. Stage-I of this pipeline employs robust-PCA methods to estimate the ground-truth column-space. Equipped with the column-space, stage-II applies methods for linear regression without correspondences to restore the permuted data. A computational study reveals encouraging findings, including the ability of UPCA to handle face images from the Extended Yale-B database with arbitrarily permuted patches of arbitrary size in $0.3$ seconds on a standard desktop computer.
84 - Gad Zalcberg , Ami Wiesel 2020
We consider Fair Principal Component Analysis (FPCA) and search for a low dimensional subspace that spans multiple target vectors in a fair manner. FPCA is defined as a non-concave maximization of the worst projected target norm within a given set. T he problem arises in filter design in signal processing, and when incorporating fairness into dimensionality reduction schemes. The state of the art approach to FPCA is via semidefinite relaxation and involves a polynomial yet computationally expensive optimization. To allow scalability, we propose to address FPCA using naive sub-gradient descent. We analyze the landscape of the underlying optimization in the case of orthogonal targets. We prove that the landscape is benign and that all local minima are globally optimal. Interestingly, the SDR approach leads to sub-optimal solutions in this simple case. Finally, we discuss the equivalence between orthogonal FPCA and the design of normalized tight frames.
Principal Component Analysis (PCA) is a common multivariate statistical analysis method, and Probabilistic Principal Component Analysis (PPCA) is its probabilistic reformulation under the framework of Gaussian latent variable model. To improve the ro bustness of PPCA, it has been proposed to change the underlying Gaussian distributions to multivariate $t$-distributions. Based on the representation of $t$-distribution as a scale mixture of Gaussians, a hierarchical model is used for implementation. However, although the robust PPCA methods work reasonably well for some simulation studies and real data, the hierarchical model implemented does not yield the equivalent interpretation. In this paper, we present a set of equivalent relationships between those models, and discuss the performance of robust PPCA methods using different multivariate $t$-distributed structures through several simulation studies. In doing so, we clarify a current misrepresentation in the literature, and make connections between a set of hierarchical models for robust PPCA.
We study the problem of tensor robust principal component analysis (TRPCA), which aims to separate an underlying low-multilinear-rank tensor and a sparse outlier tensor from their sum. In this work, we propose a fast non-convex algorithm, coined Robu st Tensor CUR (RTCUR), for large-scale TRPCA problems. RTCUR considers a framework of alternating projections and utilizes the recently developed tensor Fiber CUR decomposition to dramatically lower the computational complexity. The performance advantage of RTCUR is empirically verified against the state-of-the-arts on the synthetic datasets and is further demonstrated on the real-world application such as color video background subtraction.
132 - Kai Liu , Qiuwei Li , Hua Wang 2019
Principal Component Analysis (PCA) is one of the most important methods to handle high dimensional data. However, most of the studies on PCA aim to minimize the loss after projection, which usually measures the Euclidean distance, though in some fiel ds, angle distance is known to be more important and critical for analysis. In this paper, we propose a method by adding constraints on factors to unify the Euclidean distance and angle distance. However, due to the nonconvexity of the objective and constraints, the optimized solution is not easy to obtain. We propose an alternating linearized minimization method to solve it with provable convergence rate and guarantee. Experiments on synthetic data and real-world datasets have validated the effectiveness of our method and demonstrated its advantages over state-of-art clustering methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا