ترغب بنشر مسار تعليمي؟ اضغط هنا

Incorporating planning intelligence into deep learning: A planning support tool for street network design

89   0   0.0 ( 0 )
 نشر من قبل Zhou Fang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning applications in shaping ad hoc planning proposals are limited by the difficulty in integrating professional knowledge about cities with artificial intelligence. We propose a novel, complementary use of deep neural networks and planning guidance to automate street network generation that can be context-aware, example-based and user-guided. The model tests suggest that the incorporation of planning knowledge (e.g., road junctions and neighborhood types) in the model training leads to a more realistic prediction of street configurations. Furthermore, the new tool provides both professional and lay users an opportunity to systematically and intuitively explore benchmark proposals for comparisons and further evaluations.



قيم البحث

اقرأ أيضاً

In countries experiencing unprecedented waves of urbanization, there is a need for rapid and high quality urban street design. Our study presents a novel deep learning powered approach, DeepStreet (DS), for automatic street network generation that ca n be applied to the urban street design with local characteristics. DS is driven by a Convolutional Neural Network (CNN) that enables the interpolation of streets based on the areas of immediate vicinity. Specifically, the CNN is firstly trained to detect, recognize and capture the local features as well as the patterns of the existing street network sourced from the OpenStreetMap. With the trained CNN, DS is able to predict street networks future expansion patterns within the predefined region conditioned on its surrounding street networks. To test the performance of DS, we apply it to an area in and around the Eixample area in the City of Barcelona, a well known example in the fields of urban and transport planning with iconic grid like street networks in the centre and irregular road alignments farther afield. The results show that DS can (1) detect and self cluster different types of complex street patterns in Barcelona; (2) predict both gridiron and irregular street and road networks. DS proves to have a great potential as a novel tool for designers to efficiently design the urban street network that well maintains the consistency across the existing and newly generated urban street network. Furthermore, the generated networks can serve as a benchmark to guide the local plan-making especially in rapidly developing cities.
We propose to take a novel approach to robot system design where each building block of a larger system is represented as a differentiable program, i.e. a deep neural network. This representation allows for integrating algorithmic planning and deep l earning in a principled manner, and thus combine the benefits of model-free and model-based methods. We apply the proposed approach to a challenging partially observable robot navigation task. The robot must navigate to a goal in a previously unseen 3-D environment without knowing its initial location, and instead relying on a 2-D floor map and visual observations from an onboard camera. We introduce the Navigation Networks (NavNets) that encode state estimation, planning and acting in a single, end-to-end trainable recurrent neural network. In preliminary simulation experiments we successfully trained navigation networks to solve the challenging partially observable navigation task.
Recent developments in the field of robot grasping have shown great improvements in the grasp success rates when dealing with unknown objects. In this work we improve on one of the most promising approaches, the Grasp Quality Convolutional Neural Net work (GQ-CNN) trained on the DexNet 2.0 dataset. We propose a new architecture for the GQ-CNN and describe practical improvements that increase the model validation accuracy from 92.2% to 95.8% and from 85.9% to 88.0% on respectively image-wise and object-wise training and validation splits.
70 - Geoff Boeing 2020
This morphological study identifies and measures recent nationwide trends in American street network design. Historically, orthogonal street grids provided the interconnectivity and density that researchers identify as important factors for reducing vehicular travel and emissions and increasing road safety and physical activity. During the 20th century, griddedness declined in planning practice alongside declines in urban form compactness, density, and connectivity as urbanization sprawled around automobile dependence. But less is known about comprehensive empirical trends across US neighborhoods, especially in recent years. This study uses public and open data to examine tract-level street networks across the entire US. It develops theoretical and measurement frameworks for a quality of street networks defined here as griddedness. It measures how griddedness, orientation order, straightness, 4-way intersections, and intersection density declined from 1940 through the 1990s while dead-ends and block lengths increased. However, since 2000, these trends have rebounded, shifting back toward historical design patterns. Yet, despite this rebound, when controlling for topography and built environment factors all decades post-1939 are associated with lower griddedness than pre-1940. Higher griddedness is associated with less car ownership - which itself has a well-established relationship with vehicle kilometers traveled and greenhouse gas emissions - while controlling for density, home and household size, income, jobs proximity, street network grain, and local topography. Interconnected grid-like street networks offer practitioners an important tool for curbing car dependence and emissions. Once established, street patterns determine urban spatial structure for centuries, so proactive planning is essential.
86 - Xiaohan Yang , Qingyin Ge 2019
Our project aims at helping independent musicians to plan their concerts based on the economies of agglomeration in the music industry. Initially, we planned to design an advisory tool for both concert pricing and location selection. Nonetheless, aft er implementing SGD linear regression and support vector regression models, we realized that concert price does not vary significantly according to different music types, concert time, concert location and ticket venues. Therefore, to offer more useful suggestions, we focus on the location choice problem by turning it to a classification task. The overall performance of our classification model is pretty good. After tuning hyperparameters, we discovered the Random Forest gives the best performance, improving the classification result by 316%. This result reveals that we could help independent musicians better locate their concerts to where similar musicians would go, namely a place with higher network effects.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا