ﻻ يوجد ملخص باللغة العربية
Long training time hinders the potential of the deep, large-scale Spiking Neural Network (SNN) with the on-chip learning capability to be realized on the embedded systems hardware. Our work proposes a novel connection pruning approach that can be applied during the on-chip Spike Timing Dependent Plasticity (STDP)-based learning to optimize the learning time and the network connectivity of the deep SNN. We applied our approach to a deep SNN with the Time To First Spike (TTFS) coding and has successfully achieved 2.1x speed-up and 64% energy savings in the on-chip learning and reduced the network connectivity by 92.83%, without incurring any accuracy loss. Moreover, the connectivity reduction results in 2.83x speed-up and 78.24% energy savings in the inference. Evaluation of our proposed approach on the Field Programmable Gate Array (FPGA) platform revealed 0.56% power overhead was needed to implement the pruning algorithm.
Spiking Neural Networks (SNNs) have been attached great importance due to their biological plausibility and high energy-efficiency on neuromorphic chips. As these chips are usually resource-constrained, the compression of SNNs is thus crucial along t
Deep Spiking Neural Networks (SNNs) present optimization difficulties for gradient-based approaches due to discrete binary activation and complex spatial-temporal dynamics. Considering the huge success of ResNet in deep learning, it would be natural
Spiking neural networks (SNNs) have shown clear advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency, due to their event-driven nature and sparse communication. However, the training of deep
Computation using brain-inspired spiking neural networks (SNNs) with neuromorphic hardware may offer orders of magnitude higher energy efficiency compared to the current analog neural networks (ANNs). Unfortunately, training SNNs with the same number
Spiking neural networks (SNNs) are well suited for spatio-temporal learning and implementations on energy-efficient event-driven neuromorphic processors. However, existing SNN error backpropagation (BP) methods lack proper handling of spiking discont