ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Residual Learning in Spiking Neural Networks

93   0   0.0 ( 0 )
 نشر من قبل Wei Fang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep Spiking Neural Networks (SNNs) present optimization difficulties for gradient-based approaches due to discrete binary activation and complex spatial-temporal dynamics. Considering the huge success of ResNet in deep learning, it would be natural to train deep SNNs with residual learning. Previous Spiking ResNet mimics the standard residual block in ANNs and simply replaces ReLU activation layers with spiking neurons, which suffers the degradation problem and can hardly implement residual learning. In this paper, we propose the spike-element-wise (SEW) ResNet to realize residual learning in deep SNNs. We prove that the SEW ResNet can easily implement identity mapping and overcome the vanishing/exploding gradient problems of Spiking ResNet. We evaluate our SEW ResNet on ImageNet and DVS Gesture datasets, and show that SEW ResNet outperforms the state-of-the-art directly trained SNNs in both accuracy and time-steps. Moreover, SEW ResNet can achieve higher performance by simply adding more layers, providing a simple method to train deep SNNs. To our best knowledge, this is the first time that directly training deep SNNs with more than 100 layers becomes possible.

قيم البحث

اقرأ أيضاً

Computation using brain-inspired spiking neural networks (SNNs) with neuromorphic hardware may offer orders of magnitude higher energy efficiency compared to the current analog neural networks (ANNs). Unfortunately, training SNNs with the same number of layers as state of the art ANNs remains a challenge. To our knowledge the only method which is successful in this regard is supervised training of ANN and then converting it to SNN. In this work we directly train deep SNNs using backpropagation with surrogate gradient and find that due to implicitly recurrent nature of feed forward SNNs the exploding or vanishing gradient problem severely hinders their training. We show that this problem can be solved by tuning the surrogate gradient function. We also propose using batch normalization from ANN literature on input currents of SNN neurons. Using these improvements we show that is is possible to train SNN with ResNet50 architecture on CIFAR100 and Imagenette object recognition datasets. The trained SNN falls behind in accuracy compared to analogous ANN but requires several orders of magnitude less inference time steps (as low as 10) to reach good accuracy compared to SNNs obtained by conversion from ANN which require on the order of 1000 time steps.
Deep spiking neural networks (SNNs) hold great potential for improving the latency and energy efficiency of deep neural networks through event-based computation. However, training such networks is difficult due to the non-differentiable nature of asy nchronous spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are only considered as noise. This enables an error backpropagation mechanism for deep SNNs, which works directly on spike signals and membrane potentials. Thus, compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statics of spikes more precisely. Our novel framework outperforms all previously reported results for SNNs on the permutation invariant MNIST benchmark, as well as the N-MNIST benchmark recorded with event-based vision sensors.
244 - Wenrui Zhang , Peng Li 2020
Spiking neural networks (SNNs) are well suited for spatio-temporal learning and implementations on energy-efficient event-driven neuromorphic processors. However, existing SNN error backpropagation (BP) methods lack proper handling of spiking discont inuities and suffer from low performance compared with the BP methods for traditional artificial neural networks. In addition, a large number of time steps are typically required to achieve decent performance, leading to high latency and rendering spike-based computation unscalable to deep architectures. We present a novel Temporal Spike Sequence Learning Backpropagation (TSSL-BP) method for training deep SNNs, which breaks down error backpropagation across two types of inter-neuron and intra-neuron dependencies and leads to improved temporal learning precision. It captures inter-neuron dependencies through presynaptic firing times by considering the all-or-none characteristics of firing activities and captures intra-neuron dependencies by handling the internal evolution of each neuronal state in time. TSSL-BP efficiently trains deep SNNs within a much shortened temporal window of a few steps while improving the accuracy for various image classification datasets including CIFAR10.
Long training time hinders the potential of the deep, large-scale Spiking Neural Network (SNN) with the on-chip learning capability to be realized on the embedded systems hardware. Our work proposes a novel connection pruning approach that can be app lied during the on-chip Spike Timing Dependent Plasticity (STDP)-based learning to optimize the learning time and the network connectivity of the deep SNN. We applied our approach to a deep SNN with the Time To First Spike (TTFS) coding and has successfully achieved 2.1x speed-up and 64% energy savings in the on-chip learning and reduced the network connectivity by 92.83%, without incurring any accuracy loss. Moreover, the connectivity reduction results in 2.83x speed-up and 78.24% energy savings in the inference. Evaluation of our proposed approach on the Field Programmable Gate Array (FPGA) platform revealed 0.56% power overhead was needed to implement the pruning algorithm.
Spiking neural networks (SNNs) have shown clear advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency, due to their event-driven nature and sparse communication. However, the training of deep SNNs is not straightforward. In this paper, we propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition, which is referred to as progressive tandem learning of deep SNNs. By studying the equivalence between ANNs and SNNs in the discrete representation space, a primitive network conversion method is introduced that takes full advantage of spike count to approximate the activation value of analog neurons. To compensate for the approximation errors arising from the primitive network conversion, we further introduce a layer-wise learning method with an adaptive training scheduler to fine-tune the network weights. The progressive tandem learning framework also allows hardware constraints, such as limited weight precision and fan-in connections, to be progressively imposed during training. The SNNs thus trained have demonstrated remarkable classification and regression capabilities on large-scale object recognition, image reconstruction, and speech separation tasks, while requiring at least an order of magnitude reduced inference time and synaptic operations than other state-of-the-art SNN implementations. It, therefore, opens up a myriad of opportunities for pervasive mobile and embedded devices with a limited power budget.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا