ترغب بنشر مسار تعليمي؟ اضغط هنا

An Empirical Study on Model-agnostic Debiasing Strategies for Robust Natural Language Inference

111   0   0.0 ( 0 )
 نشر من قبل Tianyu Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The prior work on natural language inference (NLI) debiasing mainly targets at one or few known biases while not necessarily making the models more robust. In this paper, we focus on the model-agnostic debiasing strategies and explore how to (or is it possible to) make the NLI models robust to multiple distinct adversarial attacks while keeping or even strengthening the models generalization power. We firstly benchmark prevailing neural NLI models including pretrained ones on various adversarial datasets. We then try to combat distinct known biases by modifying a mixture of experts (MoE) ensemble method and show that its nontrivial to mitigate multiple NLI biases at the same time, and that model-level ensemble method outperforms MoE ensemble method. We also perform data augmentation including text swap, word substitution and paraphrase and prove its efficiency in combating various (though not all) adversarial attacks at the same time. Finally, we investigate several methods to merge heterogeneous training data (1.35M) and perform model ensembling, which are straightforward but effective to strengthen NLI models.

قيم البحث

اقرأ أيضاً

Neural network models have been very successful at achieving high accuracy on natural language inference (NLI) tasks. However, as demonstrated in recent literature, when tested on some simple adversarial examples, most of the models suffer a signific ant drop in performance. This raises the concern about the robustness of NLI models. In this paper, we propose to make NLI models robust by incorporating external knowledge to the attention mechanism using a simple transformation. We apply the new attention to two popular types of NLI models: one is Transformer encoder, and the other is a decomposable model, and show that our method can significantly improve their robustness. Moreover, when combined with BERT pretraining, our method achieves the human-level performance on the adversarial SNLI data set.
120 - Biao Yi , Hanzhou Wu , Guorui Feng 2021
Recent advances in linguistic steganalysis have successively applied CNNs, RNNs, GNNs and other deep learning models for detecting secret information in generative texts. These methods tend to seek stronger feature extractors to achieve higher stegan alysis effects. However, we have found through experiments that there actually exists significant difference between automatically generated steganographic texts and carrier texts in terms of the conditional probability distribution of individual words. Such kind of statistical difference can be naturally captured by the language model used for generating steganographic texts, which drives us to give the classifier a priori knowledge of the language model to enhance the steganalysis ability. To this end, we present two methods to efficient linguistic steganalysis in this paper. One is to pre-train a language model based on RNN, and the other is to pre-train a sequence autoencoder. Experimental results show that the two methods have different degrees of performance improvement when compared to the randomly initialized RNN classifier, and the convergence speed is significantly accelerated. Moreover, our methods have achieved the best detection results.
Recent studies show that crowd-sourced Natural Language Inference (NLI) datasets may suffer from significant biases like annotation artifacts. Models utilizing these superficial clues gain mirage advantages on the in-domain testing set, which makes t he evaluation results over-estimated. The lack of trustworthy evaluation settings and benchmarks stalls the progress of NLI research. In this paper, we propose to assess a models trustworthy generalization performance with cross-datasets evaluation. We present a new unified cross-datasets benchmark with 14 NLI datasets, and re-evaluate 9 widely-used neural network-based NLI models as well as 5 recently proposed debiasing methods for annotation artifacts. Our proposed evaluation scheme and experimental baselines could provide a basis to inspire future reliable NLI research.
We present SherLIiC, a testbed for lexical inference in context (LIiC), consisting of 3985 manually annotated inference rule candidates (InfCands), accompanied by (i) ~960k unlabeled InfCands, and (ii) ~190k typed textual relations between Freebase e ntities extracted from the large entity-linked corpus ClueWeb09. Each InfCand consists of one of these relations, expressed as a lemmatized dependency path, and two argument placeholders, each linked to one or more Freebase types. Due to our candidate selection process based on strong distributional evidence, SherLIiC is much harder than existing testbeds because distributional evidence is of little utility in the classification of InfCands. We also show that, due to its construction, many of SherLIiCs correct InfCands are novel and missing from existing rule bases. We evaluate a number of strong baselines on SherLIiC, ranging from semantic vector space models to state of the art neural models of natural language inference (NLI). We show that SherLIiC poses a tough challenge to existing NLI systems.
117 - Yu-An Wang , Yun-Nung Chen 2020
In recent years, pre-trained Transformers have dominated the majority of NLP benchmark tasks. Many variants of pre-trained Transformers have kept breaking out, and most focus on designing different pre-training objectives or variants of self-attentio n. Embedding the position information in the self-attention mechanism is also an indispensable factor in Transformers however is often discussed at will. Therefore, this paper carries out an empirical study on position embeddings of mainstream pre-trained Transformers, which mainly focuses on two questions: 1) Do position embeddings really learn the meaning of positions? 2) How do these different learned position embeddings affect Transformers for NLP tasks? This paper focuses on providing a new insight of pre-trained position embeddings through feature-level analysis and empirical experiments on most of iconic NLP tasks. It is believed that our experimental results can guide the future work to choose the suitable positional encoding function for specific tasks given the application property.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا