ﻻ يوجد ملخص باللغة العربية
Neural network models have been very successful at achieving high accuracy on natural language inference (NLI) tasks. However, as demonstrated in recent literature, when tested on some simple adversarial examples, most of the models suffer a significant drop in performance. This raises the concern about the robustness of NLI models. In this paper, we propose to make NLI models robust by incorporating external knowledge to the attention mechanism using a simple transformation. We apply the new attention to two popular types of NLI models: one is Transformer encoder, and the other is a decomposable model, and show that our method can significantly improve their robustness. Moreover, when combined with BERT pretraining, our method achieves the human-level performance on the adversarial SNLI data set.
Natural language inference (NLI) is among the most challenging tasks in natural language understanding. Recent work on unsupervised pretraining that leverages unsupervised signals such as language-model and sentence prediction objectives has shown to
While recent research on natural language inference has considerably benefited from large annotated datasets, the amount of inference-related knowledge (including commonsense) provided in the annotated data is still rather limited. There have been tw
In logic-based approaches to reasoning tasks such as Recognizing Textual Entailment (RTE), it is important for a system to have a large amount of knowledge data. However, there is a tradeoff between adding more knowledge data for improved RTE perform
We introduce Uncertain Natural Language Inference (UNLI), a refinement of Natural Language Inference (NLI) that shifts away from categorical labels, targeting instead the direct prediction of subjective probability assessments. We demonstrate the fea
There are now many adversarial attacks for natural language processing systems. Of these, a vast majority achieve success by modifying individual document tokens, which we call here a textit{token-modification} attack. Each token-modification attack