ترغب بنشر مسار تعليمي؟ اضغط هنا

A Critique of Self-Expressive Deep Subspace Clustering

134   0   0.0 ( 0 )
 نشر من قبل Benjamin Haeffele
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Subspace clustering is an unsupervised clustering technique designed to cluster data that is supported on a union of linear subspaces, with each subspace defining a cluster with dimension lower than the ambient space. Many existing formulations for this problem are based on exploiting the self-expressive property of linear subspaces, where any point within a subspace can be represented as linear combination of other points within the subspace. To extend this approach to data supported on a union of non-linear manifolds, numerous studies have proposed learning an embedding of the original data using a neural network which is regularized by a self-expressive loss function on the data in the embedded space to encourage a union of linear subspaces prior on the data in the embedded space. Here we show that there are a number of potential flaws with this approach which have not been adequately addressed in prior work. In particular, we show the model formulation is often ill-posed in that it can lead to a degenerate embedding of the data, which need not correspond to a union of subspaces at all and is poorly suited for clustering. We validate our theoretical results experimentally and also repeat prior experiments reported in the literature, where we conclude that a significant portion of the previously claimed performance benefits can be attributed to an ad-hoc post processing step rather than the deep subspace clustering model.



قيم البحث

اقرأ أيضاً

Many state-of-the-art subspace clustering methods follow a two-step process by first constructing an affinity matrix between data points and then applying spectral clustering to this affinity. Most of the research into these methods focuses on the fi rst step of generating the affinity, which often exploits the self-expressive property of linear subspaces, with little consideration typically given to the spectral clustering step that produces the final clustering. Moreover, existing methods often obtain the final affinity that is used in the spectral clustering step by applying ad-hoc or arbitrarily chosen postprocessing steps to the affinity generated by a self-expressive clustering formulation, which can have a significant impact on the overall clustering performance. In this work, we unify these two steps by learning both a self-expressive representation of the data and an affinity matrix that is well-normalized for spectral clustering. In our proposed models, we constrain the affinity matrix to be doubly stochastic, which results in a principled method for affinity matrix normalization while also exploiting known benefits of doubly stochastic normalization in spectral clustering. We develop a general framework and derive two models: one that jointly learns the self-expressive representation along with the doubly stochastic affinity, and one that sequentially solves for one then the other. Furthermore, we leverage sparsity in the problem to develop a fast active-set method for the sequential solver that enables efficient computation on large datasets. Experiments show that our method achieves state-of-the-art subspace clustering performance on many common datasets in computer vision.
308 - Juncheng Lv , Zhao Kang , Xiao Lu 2021
Auto-Encoder (AE)-based deep subspace clustering (DSC) methods have achieved impressive performance due to the powerful representation extracted using deep neural networks while prioritizing categorical separability. However, self-reconstruction loss of an AE ignores rich useful relation information and might lead to indiscriminative representation, which inevitably degrades the clustering performance. It is also challenging to learn high-level similarity without feeding semantic labels. Another unsolved problem facing DSC is the huge memory cost due to $ntimes n$ similarity matrix, which is incurred by the self-expression layer between an encoder and decoder. To tackle these problems, we use pairwise similarity to weigh the reconstruction loss to capture local structure information, while a similarity is learned by the self-expression layer. Pseudo-graphs and pseudo-labels, which allow benefiting from uncertain knowledge acquired during network training, are further employed to supervise similarity learning. Joint learning and iterative training facilitate to obtain an overall optimal solution. Extensive experiments on benchmark datasets demonstrate the superiority of our approach. By combining with the $k$-nearest neighbors algorithm, we further show that our method can address the large-scale and out-of-sample problems.
Graph-based subspace clustering methods have exhibited promising performance. However, they still suffer some of these drawbacks: encounter the expensive time overhead, fail in exploring the explicit clusters, and cannot generalize to unseen data poi nts. In this work, we propose a scalable graph learning framework, seeking to address the above three challenges simultaneously. Specifically, it is based on the ideas of anchor points and bipartite graph. Rather than building a $ntimes n$ graph, where $n$ is the number of samples, we construct a bipartite graph to depict the relationship between samples and anchor points. Meanwhile, a connectivity constraint is employed to ensure that the connected components indicate clusters directly. We further establish the connection between our method and the K-means clustering. Moreover, a model to process multi-view data is also proposed, which is linear scaled with respect to $n$. Extensive experiments demonstrate the efficiency and effectiveness of our approach with respect to many state-of-the-art clustering methods.
Clustering methods based on deep neural networks have proven promising for clustering real-world data because of their high representational power. In this paper, we propose a systematic taxonomy of clustering methods that utilize deep neural network s. We base our taxonomy on a comprehensive review of recent work and validate the taxonomy in a case study. In this case study, we show that the taxonomy enables researchers and practitioners to systematically create new clustering methods by selectively recombining and replacing distinct aspects of previous methods with the goal of overcoming their individual limitations. The experimental evaluation confirms this and shows that the method created for the case study achieves state-of-the-art clustering quality and surpasses it in some cases.
Unsupervised continual learning remains a relatively uncharted territory in the existing literature because the vast majority of existing works call for unlimited access of ground truth incurring expensive labelling cost. Another issue lies in the pr oblem of task boundaries and task IDs which must be known for models updates or models predictions hindering feasibility for real-time deployment. Knowledge Retention in Self-Adaptive Deep Continual Learner, (KIERA), is proposed in this paper. KIERA is developed from the notion of flexible deep clustering approach possessing an elastic network structure to cope with changing environments in the timely manner. The centroid-based experience replay is put forward to overcome the catastrophic forgetting problem. KIERA does not exploit any labelled samples for model updates while featuring a task-agnostic merit. The advantage of KIERA has been numerically validated in popular continual learning problems where it shows highly competitive performance compared to state-of-the art approaches. Our implementation is available in textit{url{https://github.com/ContinualAL/KIERA}}.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا