ﻻ يوجد ملخص باللغة العربية
Clustering methods based on deep neural networks have proven promising for clustering real-world data because of their high representational power. In this paper, we propose a systematic taxonomy of clustering methods that utilize deep neural networks. We base our taxonomy on a comprehensive review of recent work and validate the taxonomy in a case study. In this case study, we show that the taxonomy enables researchers and practitioners to systematically create new clustering methods by selectively recombining and replacing distinct aspects of previous methods with the goal of overcoming their individual limitations. The experimental evaluation confirms this and shows that the method created for the case study achieves state-of-the-art clustering quality and surpasses it in some cases.
In this paper, we propose a novel framework for Deep Clustering and multi-manifold Representation Learning (DCRL) that preserves the geometric structure of data. In the proposed framework, manifold clustering is done in the latent space guided by a c
Any clustering algorithm must synchronously learn to model the clusters and allocate data to those clusters in the absence of labels. Mixture model-based methods model clusters with pre-defined statistical distributions and allocate data to those clu
Graphs have become increasingly popular in modeling structures and interactions in a wide variety of problems during the last decade. Graph-based clustering and semi-supervised classification techniques have shown impressive performance. This paper p
Subspace clustering is an unsupervised clustering technique designed to cluster data that is supported on a union of linear subspaces, with each subspace defining a cluster with dimension lower than the ambient space. Many existing formulations for t
We describe a learning-based approach to hand-eye coordination for robotic grasping from monocular images. To learn hand-eye coordination for grasping, we trained a large convolutional neural network to predict the probability that task-space motion