ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry properties of nonlinear hydrodynamic interactions between responsive particles

187   0   0.0 ( 0 )
 نشر من قبل Haim Diamant
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two identical particles driven by the same steady force through a viscous fluid may move relative to one another due to hydrodynamic interactions. The presence or absence of this relative translation has a profound effect on the dynamics of a driven suspension consisting of many particles. We consider a pair of particles which, to linear order in the force, do not interact hydrodynamically. If the system possesses an intrinsic property (such as the shape of the particles, their position with respect to a boundary, or the shape of the boundary) which is affected by the external forcing, hydrodynamic interactions that depend nonlinearly on the force may emerge. We study the general properties of such nonlinear response. Analysis of the symmetries under particle exchange and under force reversal leads to general conclusions concerning the appearance of relative translation and the motions time-reversibility. We demonstrate the applicability of the conclusions in three specific examples: (a) two spheres driven parallel to a wall; (b) two deformable objects driven parallel to their connecting line; and (c) two spheres driven along a curved path. The breaking of time-reversibility suggests a possible use of nonlinear hydrodynamic interactions to disperse or assemble particles by an alternating force.

قيم البحث

اقرأ أيضاً

Terrestrial experiments on active particles, such as Volvox, involve gravitational forces, torques and accompanying monopolar fluid flows. Taking these into account, we analyse the dynamics of a pair of self-propelling, self-spinning active particles between widely separated parallel planes. Neglecting flow reflected by the planes, the dynamics of orientation and horizontal separation is symplectic, with a Hamiltonian exactly determining limit cycle oscillations. Near the bottom plane, gravitational torque damps and reflected flow excites this oscillator, sustaining a second limit cycle that can be perturbatively related to the first. Our work provides a theory for dancing Volvox and highlights the importance of monopolar flow in active matter.
The dynamics of inertial particles in Rayleigh-B{e}nard convection, where both particles and fluid exhibit thermal expansion, is studied using direct numerical simulations (DNS). We consider the effect of particles with a thermal expansion coefficien t larger than that of the fluid, causing particles to become lighter than the fluid near the hot bottom plate and heavier than the fluid near the cold top plate. Because of the opposite directions of the net Archimedes force on particles and fluid, particles deposited at the plate now experience a relative force towards the bulk. The characteristic time for this motion towards the bulk to happen, quantified as the time particles spend inside the thermal boundary layers (BLs) at the plates, is shown to depend on the thermal response time, $tau_T$, and the thermal expansion coefficient of particles relative to that of the fluid, $K = alpha_p / alpha_f$. In particular, the residence time is constant for small thermal response times, $tau_T lesssim 1$, and increasing with $tau_T$ for larger thermal response times, $tau_T gtrsim 1$. Also, the thermal BL residence time is increasing with decreasing $K$. A one-dimensional (1D) model is developed, where particles experience thermal inertia and their motion is purely dependent on the buoyancy force. Although the values do not match one-to-one, this highly simplified 1D model does predict a regime of a constant thermal BL residence time for smaller thermal response times and a regime of increasing residence time with $tau_T$ for larger response times, thus explaining the trends in the DNS data well.
Liquid capillary-bridge formation between solid particles has a critical influence on the rheological properties of granular materials and, in particular, on the efficiency of fluidized bed reactors. The available analytical and semi-analytical metho ds have inherent limitations, and often do not cover important aspects, like the presence of non-axisymmetric bridges. Here, we conduct numerical simulations of the capillary bridge formation between equally and unequally-sized solid particles using the lattice Boltzmann method, and provide an assessment of the accuracy of different families of analytical models. We find that some of the models taken into account are shown to perform better than others. However, all of them fail to predict the capillary force for contact angles larger than $pi/2$, where a repulsive capillary force attempts to push the solid particle outwards to minimize the surface energy, especially at a small separation distance.
Responding to a lack in the literature, mechanical properties of polygonal wood particles are determined for use in a discrete element model (DEM) for flow analysis in silos, and some methods are proposed for determining such parameters. The paramete rs arrived at here have also formed part of the input to the SPOLY software, developed in-house to compute the DEM model with spheropolyhedron elements. The model is validated using a 2D physical model, where prismatic particles with polygonal cross sections are placed inside a silo with variable aperture and hopper angle. Validation includes comparison of flow-rates computed by SPOLY, displacement profiles, and clogging thresholds with experimental results. The good agreement that emerges will encourage future use of miniature triaxial tests, grain-surface profilometry, inclined slope tests, and numerical analysis of the intragranular stresses - toward a direct construction of the contact-deformation relations required in realistic DEM modelling of particle flow with angular-shaped particles.
We examine the scaling with activity of the emergent length scales that control the nonequilibrium dynamics of an active nematic liquid crystal, using two popular hydrodynamic models that have been employed in previous studies. In both models we find that the chaotic spatio-temporal dynamics in the regime of fully developed active turbulence is controlled by a single active scale determined by the balance of active and elastic stresses, regardless of whether the active stress is extensile or contractile in nature. The observed scaling of the kinetic energy and enstropy with activity is consistent with our single-length scale argument and simple dimensional analysis. Our results provide a unified understanding of apparent discrepancies in the previous literature and demonstrate that the essential physics is robust to the choice of model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا