ﻻ يوجد ملخص باللغة العربية
Responding to a lack in the literature, mechanical properties of polygonal wood particles are determined for use in a discrete element model (DEM) for flow analysis in silos, and some methods are proposed for determining such parameters. The parameters arrived at here have also formed part of the input to the SPOLY software, developed in-house to compute the DEM model with spheropolyhedron elements. The model is validated using a 2D physical model, where prismatic particles with polygonal cross sections are placed inside a silo with variable aperture and hopper angle. Validation includes comparison of flow-rates computed by SPOLY, displacement profiles, and clogging thresholds with experimental results. The good agreement that emerges will encourage future use of miniature triaxial tests, grain-surface profilometry, inclined slope tests, and numerical analysis of the intragranular stresses - toward a direct construction of the contact-deformation relations required in realistic DEM modelling of particle flow with angular-shaped particles.
The dynamics of inertial particles in Rayleigh-B{e}nard convection, where both particles and fluid exhibit thermal expansion, is studied using direct numerical simulations (DNS). We consider the effect of particles with a thermal expansion coefficien
Two identical particles driven by the same steady force through a viscous fluid may move relative to one another due to hydrodynamic interactions. The presence or absence of this relative translation has a profound effect on the dynamics of a driven
Dynamics of regular clusters of many non-touching particles falling under gravity in a viscous fluid at low Reynolds number are analysed within the point-particle model. Evolution of two families of particle configurations is determined: 2 or 4 regul
As 2D materials such as graphene, transition metal dichalcogenides, and 2D polymers become more prevalent, solution processing and colloidal-state properties are being exploited to create advanced and functional materials. However, our understanding
Many textbooks dealing with surface tension favor the thermodynamic approach (minimization of some thermodynamic potential such as free energy) over the mechanical approach (balance of forces) to describe capillary phenomena, stating that the latter