ﻻ يوجد ملخص باللغة العربية
Reverse time migration (RTM) is a prominent technique in seismic imaging. Its resulting subsurface images are used in the industry to investigate with higher confidence the existence and the conditions of oil and gas reservoirs. Because of its high computational cost, RTM must make use of parallel computers. Balancing the workload distribution of an RTM is a growing challenge in distributed computing systems. The competition for shared resources and the differently-sized tasks of the RTM are some of the possible sources of load imbalance. Although many load balancing techniques exist, scaling up for large problems and large systems remains a challenge because synchronization overhead also scales. This paper proposes a cyclic token-based work-stealing (CTWS) algorithm for distributed memory systems applied to RTM. The novel cyclic token approach reduces the number of failed steals, avoids communication overhead, and simplifies the victim selection and the termination strategy. The proposed method is implemented as a C library using the one-sided communication feature of the message passing interface (MPI) standard. Results obtained by applying the proposed technique to balance the workload of a 3D RTM system present a factor of 14.1% speedup and reductions of the load imbalance of 78.4% when compared to the conventional static distribution.
We introduce a new graph problem, the token dropping game, and we show how to solve it efficiently in a distributed setting. We use the token dropping game as a tool to design an efficient distributed algorithm for stable orientations and more genera
In this paper we consider neighborhood load balancing in the context of selfish clients. We assume that a network of n processors and m tasks is given. The processors may have different speeds and the tasks may have different weights. Every task is c
Applications to process seismic data employ scalable parallel systems to produce timely results. To fully exploit emerging processor architectures, application will need to employ threaded parallelism within a node and message passing across nodes. T
In computer networks, participants may cooperate in processing tasks, so that loads are balanced among them. We present local distributed algorithms that (repeatedly) use local imbalance criteria to transfer loads concurrently across the participants
We study the problem of load balancing in distributed stream processing engines, which is exacerbated in the presence of skew. We introduce Partial Key Grouping (PKG), a new stream partitioning scheme that adapts the classical power of two choices to