ﻻ يوجد ملخص باللغة العربية
Solar filaments are an intriguing phenomenon, like cool clouds suspended in the hot corona. Similar structures exist in the intergalactic medium as well. Despite being a long-studied topic, solar filaments have continually attracted intensive attention because of their link to the coronal heating, coronal seismology, solar flares, and coronal mass ejections (CMEs). In this review paper, by combing through the solar filament-related work done in the past decade, we discuss several controversial topics, such as the fine structures, dynamics, magnetic configurations, and helicity of filaments. With high-resolution and high-sensitivity observations, combined with numerical simulations, it is expected that resolving these disputes will definitely lead to a huge leap in understanding the physics related to solar filaments, and even shed light on galactic filaments.
The supermassive black hole at the Galactic center, Sagittarius A*, has experienced periods of higher activity in the past. The reflection of these past outbursts is observed in the molecular material surrounding the black hole but reconstructing its
In solar filament formation mechanisms, magnetic reconnection between two sets of sheared arcades forms helical structures of the filament with numerous magnetic dips, and cooling and condensation of plasma trapped inside the helical structures suppl
The extended minimum of Solar Cycle 23, the extremely quiet solar-wind conditions prevailing, and the mini-maximum of Solar Cycle 24 drew global attention and many authors have since attempted to predict the amplitude of the upcoming Solar Cycle 25,
We present high-resolution observations of a magnetic reconnection event in the solar atmosphere taken with the New Vacuum Solar Telescope, AIA and HMI. The reconnection event occurred between the threads of a twisted arch filament system (AFS) and c
We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the unweighted undirected graph concept and adopt the Dijkstra shortest-path algorithm to recognize the filament spine. Then,