ترغب بنشر مسار تعليمي؟ اضغط هنا

A magnetic reconnection event in the solar atmosphere driven by relaxation of a twisted arch filament system

137   0   0.0 ( 0 )
 نشر من قبل Zhenghua Huang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high-resolution observations of a magnetic reconnection event in the solar atmosphere taken with the New Vacuum Solar Telescope, AIA and HMI. The reconnection event occurred between the threads of a twisted arch filament system (AFS) and coronal loops. Our observations reveal that the relaxation of the twisted AFS drives some of its threads to encounter the coronal loops, providing inflows of the reconnection. The reconnection is evidenced by flared X-shape features in the AIA images, a current-sheet-like feature apparently connecting post-reconnection loops in the halpha$+$1 AA images, small-scale magnetic cancellation in the HMI magnetograms and flows with speeds of 40--80 km/s along the coronal loops. The post-reconnection coronal loops seen in AIA 94 AA passband appear to remain bright for a relatively long time, suggesting that they have been heated and/or filled up by dense plasmas previously stored in the AFS threads. Our observations suggest that the twisted magnetic system could release its free magnetic energy into the upper solar atmosphere through reconnection processes. While the plasma pressure in the reconnecting flux tubes are significantly different, the reconfiguration of field lines could result in transferring of mass among them and induce heating therein.

قيم البحث

اقرأ أيضاً

In solar filament formation mechanisms, magnetic reconnection between two sets of sheared arcades forms helical structures of the filament with numerous magnetic dips, and cooling and condensation of plasma trapped inside the helical structures suppl y mass to the filament. Although each of these processes, namely, magnetic reconnection and coronal condensation have been separately reported, observations that show the whole process of filament formation are rare. In this Letter, we present the formation of a sigmoid via reconnection between two sets of coronal loops, and the subsequent formation of a filament through cooling and condensation of plasma inside the newly formed sigmoid. On 2014 August 27, a set of loops in the active region 12151 reconnected with another set of loops that are located to the east. A longer twisted sigmoidal structure and a set of shorter lower-lying loops then formed. The observations coincide well with the tether-cutting model. The newly formed sigmoid remains stable and does not erupt as a coronal mass ejection. From the eastern endpoint, signatures of injection of material into the sigmoid (as brightenings) are detected, which closely outline the features of increasing emission measure at these locations. This may indicate the chromospheric evaporation caused by reconnection, supplying heated plasma into the sigmoid. In the sigmoid, thermal instability occurs, and rapid cooling and condensation of plasma take place, forming a filament. The condensations then flow bi-directionally to the filament endpoints. Our results provide a clear observational evidence of the filament formation via magnetic reconnection and coronal condensation.
We study the dynamics of plasma along the legs of an arch filament system (AFS) from the chromosphere to the photosphere, observed with high-cadence spectroscopic data from two ground-based solar telescopes: the GREGOR telescope (Tenerife) using the GREGOR Infrarred Spectrograph (GRIS) in the He I 10830 r{A} range and the Swedish Solar Telescope (La Palma) using the CRisp Imaging Spectro-Polarimeter to observe the Ca II 8542 r{A} and Fe I 6173 r{A} spectral lines. The temporal evolution of the draining of the plasma was followed along the legs of a single arch filament from the chromosphere to the photosphere. The average Doppler velocities inferred at the upper chromosphere from the He I 10830 r{A} triplet reach velocities up to 20-24~km~s$^{-1}$, in the lower chromosphere and upper photosphere the Doppler velocities reach up to 11~km~s$^{-1}$ and 1.5~km~s$^{-1}$ in the case of the Ca II 8542 r{A} and Si I 10827 r{A} spectral lines, respectively. The evolution of the Doppler velocities at different layers of the solar atmosphere (chromosphere and upper photosphere) shows that they follow the same LOS velocity pattern, which confirm the observational evidence that the plasma drains towards the photosphere as proposed in models of AFSs. The Doppler velocity maps inferred from the lower photospheric Ca I 10839 r{A} or Fe I 6173 r{A} spectral lines do not show the same LOS velocity pattern. Thus, there is no evidence that the plasma reaches the lower photosphere. The observations and the nonlinear force-free field extrapolations demonstrate that the magnetic field loops of the AFS rise with time. We found flow asymmetries at different footpoints of the AFS. The NLFFF values of the magnetic field strength give us a clue to explain these flow asymmetries.
White-light flares (WLFs), first observed in 1859, refer to a type of solar flares showing an obvious enhancement of the visible continuum emission. This type of enhancement often occurs in most energetic flares, and is usually interpreted as a conse quence of efficient heating in the lower solar atmosphere through non-thermal electrons propagating downward from the energy release site in the corona. However, this coronal-reconnection model has difficulty in explaining the recently discovered small WLFs. Here we report a C2.3 white-light flare, which are associated with several observational phenomena: fast decrease in opposite-polarity photospheric magnetic fluxes, disappearance of two adjacent pores, significant heating of the lower chromosphere, negligible increase of hard X-ray flux, and an associated U-shaped magnetic field configuration. All these suggest that this white-light flare is powered by magnetic reconnection in the lower part of the solar atmosphere rather than by reconnection higher up in the corona.
Magnetic reconnection, the rearrangement of magnetic field topology, is a fundamental physical process in magnetized plasma systems all over the universe1,2. Its process is difficult to be directly observed. Coronal structures, such as coronal loops and filament spines, often sketch the magnetic field geometry and its changes in the solar corona3. Here we show a highly suggestive observation of magnetic reconnection between an erupting solar filament and its nearby coronal loops, resulting in changes in connection of the filament. X-type structures form when the erupting filament encounters the loops. The filament becomes straight, and bright current sheets form at the interfaces with the loops. Many plasmoids appear in these current sheets and propagate bi-directionally. The filament disconnects from the current sheets, which gradually disperse and disappear, reconnects to the loops, and becomes redirected to the loop footpoints. This evolution of the filament and the loops suggests successive magnetic reconnection predicted by theories1 but rarely detected with such clarity in observations. Our results on the formation, evolution, and disappearance of current sheets, confirm three-dimensional magnetic reconnection theory and have implications for the evolution of dissipation regions and the release of magnetic energy for reconnection in many magnetized plasma systems.
Magnetic reconnection modulated by non-local disturbances in the solar atmosphere has been investigated theoretically, but rarely observed. In this study, employing Ha and extreme ultraviolet (EUV) images and line of sight magnetograms, we report acc eleration of reconnection by adjacent filament eruption. In Ha images, four groups of chromospheric fibrils are observed to form a saddle-like structure. Among them, two groups of fibrils converge and reconnect. Two newly reconnected fibrils then form, and retract away from the reconnection region. In EUV images, similar structures and evolution of coronal loops are identified. Current sheet forms repeatedly at the interface of reconnecting loops, with width and length of 1-2 and 5.3-7.2 Mm, and reconnection rate of 0.18-0.3. It appears in the EUV low-temperature channels, with average differential emission measure (DEM) weighed temperature and EM of 2 MK and 2.5*10^27 cm-5. Plasmoids appear in the current sheet and propagate along it, and then further along the reconnection loops. The filament, located at the southeast of reconnection region, erupts, and pushes away the loops covering the reconnection region. Thereafter, the current sheet has width and length of 2 and 3.5 Mm, and reconnection rate of 0.57. It becomes much brighter, and appears in the EUV high-temperature channels, with average DEM-weighed temperature and EM of 5.5 MK and 1.7*10^28 cm-5. In the current sheet, more hotter plasmoids form. More thermal and kinetic energy is hence converted. These results suggest that the reconnection is significantly accelerated by the propagating disturbance caused by the nearby filament eruption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا