ﻻ يوجد ملخص باللغة العربية
The supermassive black hole at the Galactic center, Sagittarius A*, has experienced periods of higher activity in the past. The reflection of these past outbursts is observed in the molecular material surrounding the black hole but reconstructing its precise lightcurve is difficult since the distribution of the clouds along the line of sight is poorly constrained. Using Chandra high-resolution data collected from 1999 to 2011 we studied both the 6.4 keV and the 4-8 keV emission of the region located between Sgr A* and the Radio Arc, characterizing its variations down to 15 angular scale and 1-year time scale. The emission from the molecular clouds in the region varies significantly, showing either a 2-year peaked emission or 10-year linear variations. This is the first time that such fast variations are measured. Based on the cloud parameters, we conclude that these two behaviors are likely due to two distinct past outbursts of Sgr A* during which its luminosity rose to at least 10^39 erg/s.
The relatively rapid spatial and temporal variability of the X-ray radiation from some molecular clouds near the Galactic center shows that this emission component is due to the reflection of X-rays generated by a source that was luminous in the past
We present a statistical analysis of the X-ray flux distribution of Sgr A* from the Chandra X-ray Observatorys 3 Ms Sgr A* X-ray Visionary Project (XVP) in 2012. Our analysis indicates that the observed X-ray flux distribution can be decomposed into
The Large Area Telescope (LAT) aboard the $Fermi$ spacecraft routinely observes high-energy emission from gamma-ray bursts (GRBs). Here we present the second catalog of LAT-detected GRBs, covering the first 10 years of operations, from 2008 August 4
We present Chandra ACIS-I and ACIS-S observations ($sim$200 ks in total) of the X-ray luminous elliptical galaxy NGC 4636, located in the outskirts of the Virgo cluster. A soft band (0.5-2 keV) image shows the presence of a bright core in the center
Context. Although the disc instability model is widely accepted as the explanation for dwarf nova outbursts, it is still necessary to confront its predictions to observations because much of the constraints on angular momentum transport in accretion