ﻻ يوجد ملخص باللغة العربية
Solid state battery technology is motivated by the desire to deliver flexible power storage in a safe and efficient manner. The increasingly widespread use of batteries from mass-production facilities highlights the need for a rapid and sensitive diagnostic for identifying battery defects. We demonstrate the use of atomic magnetometry to measure the magnetic fields around miniature solid-state battery cells. These fields encode information about battery manufacturing defects, state of charge, impurities, or can provide important insights into ageing processes. Compared with SQUID-based magnetometry, the availability of atomic magnetometers, however, highlights the possibility for a low-cost, portable, and flexible implementation of battery quality-control and characterization technology.
The ever-increasing demand for high-capacity rechargeable batteries highlights the need for sensitive and accurate diagnostic technology for determining the state of a cell, for identifying and localizing defects, or for sensing capacity loss mechani
Solid state battery technology has recently garnered considerable interest from companies including Toyota, BMW, Dyson, and others. The primary driver behind the commercialization of solid state batteries (SSBs) is to enable the use of lithium metal
When optically pumped magnetometers are aimed for the use in Earths magnetic field, the orientation of the sensor to the field direction is of special importance to achieve accurate measurement result. Measurement errors and inaccuracies related to t
We demonstrate identification of position, material, orientation and shape of objects imaged by an $^{85}$Rb atomic magnetometer performing electromagnetic induction imaging supported by machine learning. Machine learning maximizes the information ex
We develop the XCALIB toolkit to calibrate the beam profile of an X-ray free-electron laser (XFEL) at the focal spot based on the experimental charge state distributions (CSDs) of light atoms. Accurate characterization of the fluence distribution at