ﻻ يوجد ملخص باللغة العربية
We develop a random batch Ewald (RBE) method for molecular dynamics simulations of particle systems with long-range Coulomb interactions, which achieves an $O(N)$ complexity in each step of simulating the $N$-body systems. The RBE method is based on the Ewald splitting for the Coulomb kernel with a random mini-batch type technique introduced to speed up the summation of the Fourier series for the long-range part of the splitting. Importance sampling is employed to reduce the induced force variance by taking advantage of the fast decay property of the Fourier coefficients. The stochastic approximation is unbiased with controlled variance. Analysis for bounded force fields gives some theoretic support of the method. Simulations of two typical problems of charged systems are presented to illustrate the accuracy and efficiency of the RBE method in comparison to the results from the Debye-Huckel theory and the classical Ewald summation, demonstrating that the proposed method has the attractiveness of being easy to implement with the linear scaling and is promising for many practical applications.
We propose a fast potential splitting Markov Chain Monte Carlo method which costs $O(1)$ time each step for sampling from equilibrium distributions (Gibbs measures) corresponding to particle systems with singular interacting kernels. We decompose the
We investigate several important issues regarding the Random Batch Method (RBM) for second order interacting particle systems. We first show the uniform-in-time strong convergence for second order systems under suitable contraction conditions. Second
We develop Random Batch Methods for interacting particle systems with large number of particles. These methods use small but random batches for particle interactions, thus the computational cost is reduced from $O(N^2)$ per time step to $O(N)$, for a
The Random Batch Method proposed in our previous work [Jin et al., J. Comput. Phys., 400(1), 2020] is not only a numerical method for interacting particle systems and its mean-field limit, but also can be viewed as a model of particle system in which
In extreme learning machines (ELM) the hidden-layer coefficients are randomly set and fixed, while the output-layer coefficients of the neural network are computed by a least squares method. The randomly-assigned coefficients in ELM are known to infl