ﻻ يوجد ملخص باللغة العربية
We develop Random Batch Methods for interacting particle systems with large number of particles. These methods use small but random batches for particle interactions, thus the computational cost is reduced from $O(N^2)$ per time step to $O(N)$, for a system with $N$ particles with binary interactions. On one hand, these methods are efficient Asymptotic-Preserving schemes for the underlying particle systems, allowing $N$-independent time steps and also capture, in the $N to infty$ limit, the solution of the mean field limit which are nonlinear Fokker-Planck equations; on the other hand, the stochastic processes generated by the algorithms can also be regarded as new models for the underlying problems. For one of the methods, we give a particle number independent error estimate under some special interactions. Then, we apply these methods to some representative problems in mathematics, physics, social and data sciences, including the Dyson Brownian motion from random matrix theory, Thomsons problem, distribution of wealth, opinion dynamics and clustering. Numerical results show that the methods can capture both the transient solutions and the global equilibrium in these problems.
We review the Random Batch Methods (RBM) for interacting particle systems consisting of $N$-particles, with $N$ being large. The computational cost of such systems is of $O(N^2)$, which is prohibitively expensive. The RBM methods use small but random
We investigate several important issues regarding the Random Batch Method (RBM) for second order interacting particle systems. We first show the uniform-in-time strong convergence for second order systems under suitable contraction conditions. Second
The Random Batch Method proposed in our previous work [Jin et al., J. Comput. Phys., 400(1), 2020] is not only a numerical method for interacting particle systems and its mean-field limit, but also can be viewed as a model of particle system in which
Generalized Additive Runge-Kutta schemes have shown to be a suitable tool for solving ordinary differential equations with additively partitioned right-hand sides. This work generalizes these GARK schemes to symplectic GARK schemes for additively par
In this article, we construct and analyse explicit numerical splitting methods for a class of semi-linear stochastic differential equations (SDEs) with additive noise, where the drift is allowed to grow polynomially and satisfies a global one-sided L