ترغب بنشر مسار تعليمي؟ اضغط هنا

A random-batch Monte Carlo method for many-body systems with singular kernels

134   0   0.0 ( 0 )
 نشر من قبل Zhenli Xu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a fast potential splitting Markov Chain Monte Carlo method which costs $O(1)$ time each step for sampling from equilibrium distributions (Gibbs measures) corresponding to particle systems with singular interacting kernels. We decompose the interacting potential into two parts, one is of long range but is smooth, and the other one is of short range but may be singular. To displace a particle, we first evolve a selected particle using the stochastic differential equation (SDE) under the smooth part with the idea of random batches, as commonly used in stochastic gradient Langevin dynamics. Then, we use the short range part to do a Metropolis rejection. Different from the classical Langevin dynamics, we only run the SDE dynamics with random batch for a short duration of time so that the cost in the first step is $O(p)$, where $p$ is the batch size. The cost of the rejection step is $O(1)$ since the interaction used is of short range. We justify the proposed random-batch Monte Carlo method, which combines the random batch and splitting strategies, both in theory and with numerical experiments. While giving comparable results for typical examples of the Dyson Brownian motion and Lennard-Jones fluids, our method can save more time when compared to the classical Metropolis-Hastings algorithm.



قيم البحث

اقرأ أيضاً

97 - Shi Jin , Xiantao Li 2020
Random batch algorithms are constructed for quantum Monte Carlo simulations. The main objective is to alleviate the computational cost associated with the calculations of two-body interactions, including the pairwise interactions in the potential ene rgy, and the two-body terms in the Jastrow factor. In the framework of variational Monte Carlo methods, the random batch algorithm is constructed based on the over-damped Langevin dynamics, so that updating the position of each particle in an $N$-particle system only requires $mathcal{O}(1)$ operations, thus for each time step the computational cost for $N$ particles is reduced from $mathcal{O}(N^2)$ to $mathcal{O}(N)$. For diffusion Monte Carlo methods, the random batch algorithm uses an energy decomposition to avoid the computation of the total energy in the branching step. The effectiveness of the random batch method is demonstrated using a system of liquid ${}^4$He atoms interacting with a graphite surface.
129 - Shi Jin , Lei Li , Zhenli Xu 2020
We develop a random batch Ewald (RBE) method for molecular dynamics simulations of particle systems with long-range Coulomb interactions, which achieves an $O(N)$ complexity in each step of simulating the $N$-body systems. The RBE method is based on the Ewald splitting for the Coulomb kernel with a random mini-batch type technique introduced to speed up the summation of the Fourier series for the long-range part of the splitting. Importance sampling is employed to reduce the induced force variance by taking advantage of the fast decay property of the Fourier coefficients. The stochastic approximation is unbiased with controlled variance. Analysis for bounded force fields gives some theoretic support of the method. Simulations of two typical problems of charged systems are presented to illustrate the accuracy and efficiency of the RBE method in comparison to the results from the Debye-Huckel theory and the classical Ewald summation, demonstrating that the proposed method has the attractiveness of being easy to implement with the linear scaling and is promising for many practical applications.
In this paper, we develop a simplified hybrid weighted essentially non-oscillatory (WENO) method combined with the modified ghost fluid method (MGFM) [28] to simulate the compressible two-medium flow problems. The MGFM can turn the two-medium flow pr oblems into two single-medium cases by defining the ghost fluids status in terms of the predicted the interface status, which makes the material interface invisible. For the single medium flow case, we adapt between the linear upwind scheme and the WENO scheme automatically by identifying the regions of the extreme points for the reconstruction polynomial as same as the hybrid WENO scheme [50]. Instead of calculating their exact locations, we only need to know the regions of the extreme points based on the zero point existence theorem, which is simpler for implementation and saves computation time. Meanwhile, it still keeps the robustness and has high efficiency. Extensive numerical results for both one and two dimensional two-medium flow problems are performed to demonstrate the good performances of the proposed method.
114 - Shi Jin , Lei Li , Yiqun Sun 2020
We investigate several important issues regarding the Random Batch Method (RBM) for second order interacting particle systems. We first show the uniform-in-time strong convergence for second order systems under suitable contraction conditions. Second ly, we propose the application of RBM for singular interaction kernels via kernel splitting strategy, and investigate numerically the application to molecular dynamics.
We propose a minimal generalization of the celebrated Markov-Chain Monte Carlo algorithm which allows for an arbitrary number of configurations to be visited at every Monte Carlo step. This is advantageous when a parallel computing machine is availab le, or when many biased configurations can be evaluated at little additional computational cost. As an example of the former case, we report a significant reduction of the thermalization time for the paradigmatic Sherrington-Kirkpatrick spin-glass model. For the latter case, we show that, by leveraging on the exponential number of biased configurations automatically computed by Diagrammatic Monte Carlo, we can speed up computations in the Fermi-Hubbard model by two orders of magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا