ترغب بنشر مسار تعليمي؟ اضغط هنا

Sparse Quantized Spectral Clustering

95   0   0.0 ( 0 )
 نشر من قبل Zhenyu Liao
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a large data matrix, sparsifying, quantizing, and/or performing other entry-wise nonlinear operations can have numerous benefits, ranging from speeding up iterative algorithms for core numerical linear algebra problems to providing nonlinear filters to design state-of-the-art neural network models. Here, we exploit tools from random matrix theory to make precise statements about how the eigenspectrum of a matrix changes under such nonlinear transformations. In particular, we show that very little change occurs in the informative eigenstructure even under drastic sparsification/quantization, and consequently that very little downstream performance loss occurs with very aggressively sparsified or quantized spectral clustering. We illustrate how these results depend on the nonlinearity, we characterize a phase transition beyond which spectral clustering becomes possible, and we show when such nonlinear transformations can introduce spurious non-informative eigenvectors.



قيم البحث

اقرأ أيضاً

Spectral clustering is one of the fundamental unsupervised learning methods widely used in data analysis. Sparse spectral clustering (SSC) imposes sparsity to the spectral clustering and it improves the interpretability of the model. This paper consi ders a widely adopted model for SSC, which can be formulated as an optimization problem over the Stiefel manifold with nonsmooth and nonconvex objective. Such an optimization problem is very challenging to solve. Existing methods usually solve its convex relaxation or need to smooth its nonsmooth part using certain smoothing techniques. In this paper, we propose a manifold proximal linear method (ManPL) that solves the original SSC formulation. We also extend the algorithm to solve the multiple-kernel SSC problems, for which an alternating ManPL algorithm is proposed. Convergence and iteration complexity results of the proposed methods are established. We demonstrate the advantage of our proposed methods over existing methods via the single-cell RNA sequencing data analysis.
Given a dataset and an existing clustering as input, alternative clustering aims to find an alternative partition. One of the state-of-the-art approaches is Kernel Dimension Alternative Clustering (KDAC). We propose a novel Iterative Spectral Method (ISM) that greatly improves the scalability of KDAC. Our algorithm is intuitive, relies on easily implementable spectral decompositions, and comes with theoretical guarantees. Its computation time improves upon existing implementations of KDAC by as much as 5 orders of magnitude.
114 - Huan Qing , Jingli Wang 2020
Spectral clustering methods are widely used for detecting clusters in networks for community detection, while a small change on the graph Laplacian matrix could bring a dramatic improvement. In this paper, we propose a dual regularized graph Laplacia n matrix and then employ it to three classical spectral clustering approaches under the degree-corrected stochastic block model. If the number of communities is known as $K$, we consider more than $K$ leading eigenvectors and weight them by their corresponding eigenvalues in the spectral clustering procedure to improve the performance. Three improved spectral clustering methods are dual regularized spectral clustering (DRSC) method, dual regularized spectral clustering on Ratios-of-eigenvectors (DRSCORE) method, and dual regularized symmetrized Laplacian inverse matrix (DRSLIM) method. Theoretical analysis of DRSC and DRSLIM show that under mild conditions DRSC and DRSLIM yield stable consistent community detection, moreover, DRSCORE returns perfect clustering under the ideal case. We compare the performances of DRSC, DRSCORE and DRSLIM with several spectral methods by substantial simulated networks and eight real-world networks.
In this paper, we study the spectrum and the eigenvectors of radial kernels for mixtures of distributions in $mathbb{R}^n$. Our approach focuses on high dimensions and relies solely on the concentration properties of the components in the mixture. We give several results describing of the structure of kernel matrices for a sample drawn from such a mixture. Based on these results, we analyze the ability of kernel PCA to cluster high dimensional mixtures. In particular, we exhibit a specific kernel leading to a simple spectral algorithm for clustering mixtures with possibly common means but different covariance matrices. We show that the minimum angular separation between the covariance matrices that is required for the algorithm to succeed tends to $0$ as $n$ goes to infinity.
We consider the problem of clustering datasets in the presence of arbitrary outliers. Traditional clustering algorithms such as k-means and spectral clustering are known to perform poorly for datasets contaminated with even a small number of outliers . In this paper, we develop a provably robust spectral clustering algorithm that applies a simple rounding scheme to denoise a Gaussian kernel matrix built from the data points and uses vanilla spectral clustering to recover the cluster labels of data points. We analyze the performance of our algorithm under the assumption that the good data points are generated from a mixture of sub-gaussians (we term these inliers), while the outlier points can come from any arbitrary probability distribution. For this general class of models, we show that the misclassification error decays at an exponential rate in the signal-to-noise ratio, provided the number of outliers is a small fraction of the inlier points. Surprisingly, this derived error bound matches with the best-known bound for semidefinite programs (SDPs) under the same setting without outliers. We conduct extensive experiments on a variety of simulated and real-world datasets to demonstrate that our algorithm is less sensitive to outliers compared to other state-of-the-art algorithms proposed in the literature.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا