ﻻ يوجد ملخص باللغة العربية
In this paper, we study the spectrum and the eigenvectors of radial kernels for mixtures of distributions in $mathbb{R}^n$. Our approach focuses on high dimensions and relies solely on the concentration properties of the components in the mixture. We give several results describing of the structure of kernel matrices for a sample drawn from such a mixture. Based on these results, we analyze the ability of kernel PCA to cluster high dimensional mixtures. In particular, we exhibit a specific kernel leading to a simple spectral algorithm for clustering mixtures with possibly common means but different covariance matrices. We show that the minimum angular separation between the covariance matrices that is required for the algorithm to succeed tends to $0$ as $n$ goes to infinity.
Given a large data matrix, sparsifying, quantizing, and/or performing other entry-wise nonlinear operations can have numerous benefits, ranging from speeding up iterative algorithms for core numerical linear algebra problems to providing nonlinear fi
Given a dataset and an existing clustering as input, alternative clustering aims to find an alternative partition. One of the state-of-the-art approaches is Kernel Dimension Alternative Clustering (KDAC). We propose a novel Iterative Spectral Method
Single Index Models (SIMs) are simple yet flexible semi-parametric models for classification and regression. Response variables are modeled as a nonlinear, monotonic function of a linear combination of features. Estimation in this context requires le
We show that minimum-norm interpolation in the Reproducing Kernel Hilbert Space corresponding to the Laplace kernel is not consistent if input dimension is constant. The lower bound holds for any choice of kernel bandwidth, even if selected based on
Spectral clustering methods are widely used for detecting clusters in networks for community detection, while a small change on the graph Laplacian matrix could bring a dramatic improvement. In this paper, we propose a dual regularized graph Laplacia