ﻻ يوجد ملخص باللغة العربية
In the past decade, the analysis of exoplanet atmospheric spectra has revealed the presence of water vapour in almost all the planets observed, with the exception of a fraction of overcast planets. Indeed, water vapour presents a large absorption signature in the wavelength coverage of the Hubble Space Telescopes (HST) Wide Field Camera 3 (WFC3), which is the main space-based observatory for atmospheric studies of exoplanets, making its detection very robust. However, while carbon-bearing species such as methane, carbon monoxide and carbon dioxide are also predicted from current chemical models, their direct detection and abundance characterisation has remained a challenge. Here we analyse the transmission spectrum of the puffy, clear hot-Jupiter KELT-11 b from the HST WFC3 camera. We find that the spectrum is consistent with the presence of water vapor and an additional absorption at longer wavelengths than 1.5um, which could well be explained by a mix of carbon bearing molecules. CO2, when included is systematically detected. One of the main difficulties to constrain the abundance of those molecules is their weak signatures across the HST WFC3 wavelength coverage, particularly when compared to those of water. Through a comprehensive retrieval analysis, we attempt to explain the main degeneracies present in this dataset and explore some of the recurrent challenges that are occurring in retrieval studies (e.g: the impact of model selection, the use of free vs self-consistent chemistry and the combination of instrument observations). Our results make this planet an exceptional example of chemical laboratory where to test current physical and chemical models of hot-Jupiters atmospheres.
We present an optical-to-infrared transmission spectrum of the inflated sub-Saturn KELT-11b measured with the Transiting Exoplanet Survey Satellite (TESS), the Hubble Space Telescope (HST) Wide Field Camera 3 G141 spectroscopic grism, and the Spitzer
Context: KELT-9 b exemplifies a newly emerging class of short-period gaseous exoplanets that tend to orbit hot, early type stars - termed ultra-hot Jupiters. The severe stellar irradiation heats their atmospheres to temperatures of $sim 4,000$ K, sim
Aims: We explore the capabilities of CARMENES for characterizing hot-Jupiter atmospheres by targeting multiple water bands, in particular, those at 1.15 and 1.4 $mu$m. Hubble Space Telescope observations suggest that this wavelength region is relevan
We report on novel observations of HAT-P-1 aimed at constraining the optical transmission spectrum of the atmosphere of its transiting Hot-Jupiter exoplanet. Ground-based differential spectrophotometry was performed over two transit windows using the
The chemical abundances of exoplanet atmospheres may provide valuable information about the bulk compositions, formation pathways, and evolutionary histories of planets. Exoplanets with large, relatively cloud-free atmospheres, and which orbit bright