ترغب بنشر مسار تعليمي؟ اضغط هنا

A spectral survey of an ultra-hot Jupiter: Detection of metals in the transmission spectrum of KELT-9 b

116   0   0.0 ( 0 )
 نشر من قبل Jens Hoeijmakers
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: KELT-9 b exemplifies a newly emerging class of short-period gaseous exoplanets that tend to orbit hot, early type stars - termed ultra-hot Jupiters. The severe stellar irradiation heats their atmospheres to temperatures of $sim 4,000$ K, similar to the photospheres of dwarf stars. Due to the absence of aerosols and complex molecular chemistry at such temperatures, these planets offer the potential of detailed chemical characterisation through transit and day-side spectroscopy. Studies of their chemical inventories may provide crucial constraints on their formation process and evolution history. Aims: To search the optical transmission spectrum of KELT-9 b for absorption lines by metals using the cross-correlation technique. Methods: We analyse 2 transits observed with the HARPS-N spectrograph. We use an isothermal equilibrium chemistry model to predict the transmission spectrum for each of the neutral and singly-ionized atoms with atomic numbers between 3 and 78. Of these, we identify the elements that are expected to have spectral lines in the visible wavelength range and use those as cross-correlation templates. Results: We detect absorption of Na I, Cr II, Sc II and Y II, and confirm previous detections of Mg I, Fe I, Fe II and Ti II. In addition, we find evidence of Ca I, Cr I, Co I, and Sr II that will require further observations to verify. The detected absorption lines are significantly deeper than model predictions, suggesting that material is transported to higher altitudes where the density is enhanced compared to a hydrostatic profile. There appears to be no significant blue-shift of the absorption spectrum due to a net day-to-night side wind. In particular, the strong Fe II feature is shifted by $0.18 pm 0.27$ km~s$^{-1}$, consistent with zero. Using the orbital velocity of the planet we revise the steller and planetary masses and radii.

قيم البحث

اقرأ أيضاً

With a day-side temperature in excess of 4500K, comparable to a mid-K-type star, KELT-9b is the hottest planet known. Its extreme temperature makes KELT-9b a particularly interesting test bed for investigating the nature and diversity of gas giant pl anets. We observed the transit of KELT-9b at high spectral resolution (R$sim$94,600) with the CARMENES instrument on the Calar Alto 3.5-m telescope. Using these data, we detect for the first time ionized calcium (CaII triplet) absorption in the atmosphere of KELT-9b; this is the second time that CaII has been observed in a hot Jupiter. Our observations also reveal prominent H$alpha$ absorption, confirming the presence of an extended hydrogen envelope around KELT-9b. We compare our detections with an atmospheric model and find that all four lines form between atmospheric temperatures of 6100 K and 8000 K and that the CaII lines form at pressures between 10 and 50 nbar while the H$alpha$ line forms at a lower pressure ($sim$6 nbar), higher up in the atmosphere. The altitude that the core of H$alpha$ line forms is found to be $sim$1.4 R$_{p}$, well within the planetary Roche lobe ($sim$1.9 R$_{p}$). Therefore, rather than probing the escaping upper atmosphere directly, the H$alpha$ line and the other observed Balmer and metal lines serve as atmospheric thermometers enabling us to probe the planets temperature profile, thus energy budget.
We present broad-band photometry of 30 planetary transits of the ultra-hot Jupiter KELT-16b, using five medium-class telescopes. The transits were monitored through standard B, V, R, I filters and four were simultaneously observed from different plac es, for a total of 36 new light curves. We used these new photometric data and those from the TESS space telescope to review the main physical properties of the KELT-16 planetary system. Our results agree with previous measurements but are more precise. We estimated the mid-transit times for each of these transits and combined them with others from the literature to obtain 69 epochs, with a time baseline extending over more than four years, and searched for transit time variations. We found no evidence for a period change, suggesting a lower limit for orbital decay at 8 Myr, with a lower limit on the reduced tidal quality factor of $Q^{prime}_{star}>(1.9 pm 0.8) times 10^5$ with $95%$ confidence. We built up an observational, low-resolution transmission spectrum of the planet, finding evidence of the presence of optical absorbers, although with a low significance. Using TESS data, we reconstructed the phase curve finding that KELT-16b has a phase offset of $25.25 pm 14.03$ $^{circ}$E, a day- and night-side brightness temperature of $3190 pm 61$ K and $2668 pm 56$ K, respectively. Finally, we compared the flux ratio of the planet over its star at the TESS and Spitzer wavelengths with theoretical emission spectra, finding evidence of a temperature inversion in the planets atmosphere, the chemical composition of which is preferably oxygen-rich rather than carbon-rich.
There has been increasing progress toward detailed characterization of exoplanetary atmospheres, in both observations and theoretical methods. Improvements in observational facilities and data reduction and analysis techniques are enabling increasing ly higher quality spectra, especially from ground-based facilities. The high data quality also necessitates concomitant improvements in models required to interpret such data. In particular, the detection of trace species such as metal oxides has been challenging. Extremely irradiated exoplanets (~3000 K) are expected to show oxides with strong absorption signals in the optical. However, there are only a few hot Jupiters where such signatures have been reported. Here we aim to characterize the atmosphere of the ultra-hot Jupiter WASP-33b using two primary transits taken 18 orbits apart. Our atmospheric retrieval, performed on the combined data sets, provides initial constraints on the atmospheric composition of WASP-33b. We report a possible indication of aluminum oxide (AlO) at 3.3-sigma significance. The data were obtained with the long slit OSIRIS spectrograph mounted at the 10-meter Gran Telescopio Canarias. We cleaned the brightness variations from the light curves produced by stellar pulsations, and we determined the wavelength-dependent variability of the planetary radius caused by the atmospheric absorption of stellar light. A simultaneous fit to the two transit light curves allowed us to refine the transit parameters, and the common wavelength coverage between the two transits served to contrast our results. Future observations with HST as well as other large ground-based facilities will be able to further constrain the atmospheric chemical composition of the planet.
We present an atmospheric transmission spectrum of the ultra-hot Jupiter WASP-76 b by analyzing archival data obtained with the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). The dataset spans three transits, t wo with a wavelength coverage between 2900 and 5700 Armstrong, and the third one between 5250 and 10300 Armstrong. From the one-dimensional, time dependent spectra we constructed white and chromatic light curves, the latter with typical integration band widths of ~200 Armstrong. We computed the wavelength dependent planet-to-star radii ratios taking into consideration WASP-76s companion. The resulting transmission spectrum of WASP-76 b is dominated by a spectral slope of increasing opacity towards shorter wavelengths of amplitude of about three scale heights under the assumption of planetary equilibrium temperature. If the slope is caused by Rayleigh scattering, we derive a lower limit to the temperature of ~870 K. Following-up on previous detection of atomic sodium derived from high resolution spectra, we re-analyzed HST data using narrower bands centered around sodium. From an atmospheric retrieval of this transmission spectrum, we report evidence of sodium at 2.9-sigma significance. In this case, the retrieved temperature at the top of the atmosphere (10-5 bar) is 2300 +412-392 K. We also find marginal evidence for titanium hydride. However, additional high resolution ground-based data are required to confirm this discovery.
We present the optical transmission spectrum of the hot Jupiter WASP-104b based on one transit observed by the blue and red channels of the DBSP spectrograph at the Palomar 200-inch telescope and 14 transits observed by the MuSCAT2 four-channel image r at the 1.52 m Telescopio Carlos Sanchez. We also analyse 45 additional K2 transits, after correcting for the flux contamination from a companion star. Together with the transit light curves acquired by DBSP and MuSCAT2, we are able to revise the system parameters and orbital ephemeris, confirming that no transit timing variations exist. Our DBSP and MuSCAT2 combined transmission spectrum reveals an enhanced slope at wavelengths shorter than 630 nm and suggests the presence of a cloud deck at longer wavelengths. While the Bayesian spectral retrieval analyses favour a hazy atmosphere, stellar spot contamination cannot be completely ruled out. Further evidence, from transmission spectroscopy and detailed characterisation of the host stars activity, is required to distinguish the physical origin of the enhanced slope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا