ﻻ يوجد ملخص باللغة العربية
Given a directed graph $G = (V,E)$, undergoing an online sequence of edge deletions with $m$ edges in the initial version of $G$ and $n = |V|$, we consider the problem of maintaining all-pairs shortest paths (APSP) in $G$. Whilst this problem has been studied in a long line of research [ACM81, FOCS99, FOCS01, STOC02, STOC03, SWAT04, STOC13] and the problem of $(1+epsilon)$-approximate, weighted APSP was solved to near-optimal update time $tilde{O}(mn)$ by Bernstein [STOC13], the problem has mainly been studied in the context of oblivious adversaries, which assumes that the adversary fixes the update sequence before the algorithm is started. In this paper, we make significant progress on the problem in the setting where the adversary is adaptive, i.e. can base the update sequence on the output of the data structure queries. We present three new data structures that fit different settings: We first present a deterministic data structure that maintains exact distances with total update time $tilde{O}(n^3)$. We also present a deterministic data structure that maintains $(1+epsilon)$-approximate distance estimates with total update time $tilde O(sqrt{m} n^2/epsilon)$ which for sparse graphs is $tilde O(n^{2+1/2}/epsilon)$. Finally, we present a randomized $(1+epsilon)$-approximate data structure which works against an adaptive adversary; its total update time is $tilde O(m^{2/3}n^{5/3} + n^{8/3}/(m^{1/3}epsilon^2))$ which for sparse graphs is $tilde O(n^{2+1/3})$. Our exact data structure matches the total update time of the best randomized data structure by Baswana et al. [STOC02] and maintains the distance matrix in near-optimal time. Our approximate data structures improve upon the best data structures against an adaptive adversary which have $tilde{O}(mn^2)$ total update time [JACM81, STOC03].
Given a dynamic digraph $G = (V,E)$ undergoing edge deletions and given $sin V$ and $epsilon>0$, we consider the problem of maintaining $(1+epsilon)$-approximate shortest path distances from $s$ to all vertices in $G$ over the sequence of deletions.
We present a new dynamic matching sparsification scheme. From this scheme we derive a framework for dynamically rounding fractional matchings against emph{adaptive adversaries}. Plugging in known dynamic fractional matching algorithms into our framew
Designing dynamic graph algorithms against an adaptive adversary is a major goal in the field of dynamic graph algorithms. While a few such algorithms are known for spanning trees, matchings, and single-source shortest paths, very little was known fo
The Minimum Path Cover problem on directed acyclic graphs (DAGs) is a classical problem that provides a clear and simple mathematical formulation for several applications in different areas and that has an efficient algorithmic solution. In this pape
A directed graph $D$ is semicomplete if for every pair $x,y$ of vertices of $D,$ there is at least one arc between $x$ and $y.$ viol{Thus, a tournament is a semicomplete digraph.} In the Directed Component Order Connectivity (DCOC) problem, given a d