ترغب بنشر مسار تعليمي؟ اضغط هنا

Component Order Connectivity in Directed Graphs

78   0   0.0 ( 0 )
 نشر من قبل Gregory Gutin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A directed graph $D$ is semicomplete if for every pair $x,y$ of vertices of $D,$ there is at least one arc between $x$ and $y.$ viol{Thus, a tournament is a semicomplete digraph.} In the Directed Component Order Connectivity (DCOC) problem, given a digraph $D=(V,A)$ and a pair of natural numbers $k$ and $ell$, we are to decide whether there is a subset $X$ of $V$ of size $k$ such that the largest strong connectivity component in $D-X$ has at most $ell$ vertices. Note that DCOC reduces to the Directed Feedback Vertex Set problem for $ell=1.$ We study parametered complexity of DCOC for general and semicomplete digraphs with the following parameters: $k, ell,ell+k$ and $n-ell$. In particular, we prove that DCOC with parameter $k$ on semicomplete digraphs can be solved in time $O^*(2^{16k})$ but not in time $O^*(2^{o(k)})$ unless the Exponential Time Hypothesis (ETH) fails. gutin{The upper bound $O^*(2^{16k})$ implies the upper bound $O^*(2^{16(n-ell)})$ for the parameter $n-ell.$ We complement the latter by showing that there is no algorithm of time complexity $O^*(2^{o({n-ell})})$ unless ETH fails.} Finally, we improve viol{(in dependency on $ell$)} the upper bound of G{{o}}ke, Marx and Mnich (2019) for the time complexity of DCOC with parameter $ell+k$ on general digraphs from $O^*(2^{O(kelllog (kell))})$ to $O^*(2^{O(klog (kell))}).$ Note that Drange, Dregi and van t Hof (2016) proved that even for the undirected version of DCOC on split graphs there is no algorithm of running time $O^*(2^{o(klog ell)})$ unless ETH fails and it is a long-standing problem to decide whether Directed Feedback Vertex Set admits an algorithm of time complexity $O^*(2^{o(klog k)}).$



قيم البحث

اقرأ أيضاً

The Minimum Path Cover problem on directed acyclic graphs (DAGs) is a classical problem that provides a clear and simple mathematical formulation for several applications in different areas and that has an efficient algorithmic solution. In this pape r, we study the computational complexity of two constrained variants of Minimum Path Cover motivated by the recent introduction of next-generation sequencing technologies in bioinformatics. The first problem (MinPCRP), given a DAG and a set of pairs of vertices, asks for a minimum cardinality set of paths covering all the vertices such that both vertices of each pair belong to the same path. For this problem, we show that, while it is NP-hard to compute if there exists a solution consisting of at most three paths, it is possible to decide in polynomial time whether a solution consisting of at most two paths exists. The second problem (MaxRPSP), given a DAG and a set of pairs of vertices, asks for a path containing the maximum number of the given pairs of vertices. We show its NP-hardness and also its W[1]-hardness when parametrized by the number of covered pairs. On the positive side, we give a fixed-parameter algorithm when the parameter is the maximum overlapping degree, a natural parameter in the bioinformatics applications of the problem.
We investigate the parameterized complexity in $a$ and $b$ of determining whether a graph~$G$ has a subset of $a$ vertices and $b$ edges whose removal disconnects $G$, or disconnects two prescribed vertices $s, t in V(G)$.
We study several problems related to graph modification problems under connectivity constraints from the perspective of parameterized complexity: {sc (Weighted) Biconnectivity Deletion}, where we are tasked with deleting~$k$ edges while preserving bi connectivity in an undirected graph, {sc Vertex-deletion Preserving Strong Connectivity}, where we want to maintain strong connectivity of a digraph while deleting exactly~$k$ vertices, and {sc Path-contraction Preserving Strong Connectivity}, in which the operation of path contraction on arcs is used instead. The parameterized tractability of this last problem was posed by Bang-Jensen and Yeo [DAM 2008] as an open question and we answer it here in the negative: both variants of preserving strong connectivity are $sf W[1]$-hard. Preserving biconnectivity, on the other hand, turns out to be fixed parameter tractable and we provide a $2^{O(klog k)} n^{O(1)}$-algorithm that solves {sc Weighted Biconnectivity Deletion}. Further, we show that the unweighted case even admits a randomized polynomial kernel. All our results provide further interesting data points for the systematic study of connectivity-preservation constraints in the parameterized setting.
The notion of directed treewidth was introduced by Johnson, Robertson, Seymour and Thomas [Journal of Combinatorial Theory, Series B, Vol 82, 2001] as a first step towards an algorithmic metatheory for digraphs. They showed that some NP-complete prop erties such as Hamiltonicity can be decided in polynomial time on digraphs of constant directed treewidth. Nevertheless, despite more than one decade of intensive research, the list of hard combinatorial problems that are known to be solvable in polynomial time when restricted to digraphs of constant directed treewidth has remained scarce. In this work we enrich this list by providing for the first time an algorithmic metatheorem connecting the monadic second order logic of graphs to directed treewidth. We show that most of the known positive algorithmic results for digraphs of constant directed treewidth can be reformulated in terms of our metatheorem. Additionally, we show how to use our metatheorem to provide polynomial time algorithms for two classes of combinatorial problems that have not yet been studied in the context of directed width measures. More precisely, for each fixed $k,w in mathbb{N}$, we show how to count in polynomial time on digraphs of directed treewidth $w$, the number of minimum spanning strong subgraphs that are the union of $k$ directed paths, and the number of maximal subgraphs that are the union of $k$ directed paths and satisfy a given minor closed property. To prove our metatheorem we devise two technical tools which we believe to be of independent interest. First, we introduce the notion of tree-zig-zag number of a digraph, a new directed width measure that is at most a constant times directed treewidth. Second, we introduce the notion of $z$-saturated tree slice language, a new formalism for the specification and manipulation of infinite sets of digraphs.
We present a linear-time algorithm for simplifying flow networks on directed planar graphs: Given a directed planar graph on $n$ vertices, a source vertex $s$ and a sink vertex $t$, our algorithm removes all the arcs that do not participate in any si mple $s,t$-path in linear-time. The output graph produced by our algorithm satisfies the prerequisite needed by the $O(nlog n)$-time algorithm of Weihe [FOCS94 & JCSS97] for computing maximum $s,t$-flow in directed planar graphs. Previously, Weihes algorithm could not run in $O(nlog n)$-time due to the absence of the preprocessing step; all the preceding algorithms run in $tilde{Omega}(n^2)$-time [Misiolek-Chen, COCOON05 & IPL06; Biedl, Brejov{{a}} and Vinar, MFCS00]. Consequently, this provides an alternative $O(nlog n)$-time algorithm for computing maximum $s,t$-flow in directed planar graphs in addition to the known $O(nlog n)$-time algorithms [Borradaile-Klein, SODA06 & J.ACM09; Erickson, SODA10]. Our algorithm can be seen as a (truly) linear-time $s,t$-flow sparsifier for directed planar graphs, which runs faster than any maximum $s,t$-flow algorithm (which can also be seen of as a sparsifier). The simplified structures of the resulting graph might be useful in future developments of maximum $s,t$-flow algorithms in both directed and undirected planar graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا