ترغب بنشر مسار تعليمي؟ اضغط هنا

Rounding Dynamic Matchings Against an Adaptive Adversary

94   0   0.0 ( 0 )
 نشر من قبل David Wajc
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف David Wajc




اسأل ChatGPT حول البحث

We present a new dynamic matching sparsification scheme. From this scheme we derive a framework for dynamically rounding fractional matchings against emph{adaptive adversaries}. Plugging in known dynamic fractional matching algorithms into our framework, we obtain numerous randomized dynamic matching algorithms which work against adaptive adversaries (the first such algorithms, as all previous randomized algorithms for this problem assumed an emph{oblivious} adversary). In particular, for any constant $epsilon>0$, our framework yields $(2+epsilon)$-approximate algorithms with constant update time or polylog worst-case update time, as well as $(2-delta)$-approximate algorithms in bipartite graphs with arbitrarily-small polynomial update time, with all these algorithms guarantees holding against adaptive adversaries. All these results achieve emph{polynomially} better update time to approximation tradeoffs than previously known to be achievable against adaptive adversaries.



قيم البحث

اقرأ أيضاً

Designing dynamic graph algorithms against an adaptive adversary is a major goal in the field of dynamic graph algorithms. While a few such algorithms are known for spanning trees, matchings, and single-source shortest paths, very little was known fo r an important primitive like graph sparsifiers. The challenge is how to approximately preserve so much information about the graph (e.g., all-pairs distances and all cuts) without revealing the algorithms underlying randomness to the adaptive adversary. In this paper we present the first non-trivial efficient adaptive algorithms for maintaining spanners and cut sparisifers. These algorithms in turn imply improvements over existing algorithms for other problems. Our first algorithm maintains a polylog$(n)$-spanner of size $tilde O(n)$ in polylog$(n)$ amortized update time. The second algorithm maintains an $O(k)$-approximate cut sparsifier of size $tilde O(n)$ in $tilde O(n^{1/k})$ amortized update time, for any $kge1$, which is polylog$(n)$ time when $k=log(n)$. The third algorithm maintains a polylog$(n)$-approximate spectral sparsifier in polylog$(n)$ amortized update time. The amortized update time of both algorithms can be made worst-case by paying some sub-polynomial factors. Prior to our result, there were near-optimal algorithms against oblivious adversaries (e.g. Baswana et al. [TALG12] and Abraham et al. [FOCS16]), but the only non-trivial adaptive dynamic algorithm requires $O(n)$ amortized update time to maintain $3$- and $5$-spanner of size $O(n^{1+1/2})$ and $O(n^{1+1/3})$, respectively [Ausiello et al. ESA05]. Our results are based on two novel techniques. The first technique, is a generic black-box reduction that allows us to assume that the graph undergoes only edge deletions and, more importantly, remains an expander with almost-uniform degree. The second technique we call proactive resampling. [...]
We present a framework for deterministically rounding a dynamic fractional matching. Applying our framework in a black-box manner on top of existing fractional matching algorithms, we derive the following new results: (1) The first deterministic algo rithm for maintaining a $(2-delta)$-approximate maximum matching in a fully dynamic bipartite graph, in arbitrarily small polynomial update time. (2) The first deterministic algorithm for maintaining a $(1+delta)$-approximate maximum matching in a decremental bipartite graph, in polylogarithmic update time. (3) The first deterministic algorithm for maintaining a $(2+delta)$-approximate maximum matching in a fully dynamic general graph, in small polylogarithmic (specifically, $O(log^4 n)$) update time. These results are respectively obtained by applying our framework on top of the fractional matching algorithms of Bhattacharya et al. [STOC16], Bernstein et al. [FOCS20], and Bhattacharya and Kulkarni [SODA19]. Prior to our work, there were two known general-purpose rounding schemes for dynamic fractional matchings. Both these schemes, by Arar et al. [ICALP18] and Wajc [STOC20], were randomized. Our rounding scheme works by maintaining a good {em matching-sparsifier} with bounded arboricity, and then applying the algorithm of Peleg and Solomon [SODA16] to maintain a near-optimal matching in this low arboricity graph. To the best of our knowledge, this is the first dynamic matching algorithm that works on general graphs by using an algorithm for low-arboricity graphs as a black-box subroutine. This feature of our rounding scheme might be of independent interest.
Given a dynamic digraph $G = (V,E)$ undergoing edge deletions and given $sin V$ and $epsilon>0$, we consider the problem of maintaining $(1+epsilon)$-approximate shortest path distances from $s$ to all vertices in $G$ over the sequence of deletions. Even and Shiloach (J.~ACM$81$) give a deterministic data structure for the exact version of the problem with total update time $O(mn)$. Henzinger et al. (STOC$14$, ICALP$15$) give a Monte Carlo data structure for the approximate version with improved total update time $ O(mn^{0.9 + o(1)}log W)$ where $W$ is the ratio between the largest and smallest edge weight. A drawback of their data structure is that they only work against an oblivious adversary, meaning that the sequence of deletions needs to be fixed in advance. This limits its application as a black box inside algorithms. We present the following $(1+epsilon)$-approximate data structures: (1) the first data structure is Las Vegas and works against an adaptive adversary; it has total expected update time $tilde O(m^{2/3}n^{4/3})$ for unweighted graphs and $tilde O(m^{3/4}n^{5/4}log W)$ for weighted graphs, (2) the second data structure is Las Vegas and assumes an oblivious adversary; it has total expected update time $tilde O(sqrt m n^{3/2})$ for unweighted graphs and $tilde O(m^{2/3}n^{4/3}log W)$ for weighted graphs, (3) the third data structure is Monte Carlo and is correct w.h.p.~against an oblivious adversary; it has total expected update time $tilde O((mn)^{7/8}log W) = tilde O(mn^{3/4}log W)$. Each of our data structures can be queried at any stage of $G$ in constant worst-case time; if the adversary is oblivious, a query can be extended to also report such a path in time proportional to its length. Our update times are faster than those of Henzinger et al.~for all graph densities.
Given a directed graph $G = (V,E)$, undergoing an online sequence of edge deletions with $m$ edges in the initial version of $G$ and $n = |V|$, we consider the problem of maintaining all-pairs shortest paths (APSP) in $G$. Whilst this problem has b een studied in a long line of research [ACM81, FOCS99, FOCS01, STOC02, STOC03, SWAT04, STOC13] and the problem of $(1+epsilon)$-approximate, weighted APSP was solved to near-optimal update time $tilde{O}(mn)$ by Bernstein [STOC13], the problem has mainly been studied in the context of oblivious adversaries, which assumes that the adversary fixes the update sequence before the algorithm is started. In this paper, we make significant progress on the problem in the setting where the adversary is adaptive, i.e. can base the update sequence on the output of the data structure queries. We present three new data structures that fit different settings: We first present a deterministic data structure that maintains exact distances with total update time $tilde{O}(n^3)$. We also present a deterministic data structure that maintains $(1+epsilon)$-approximate distance estimates with total update time $tilde O(sqrt{m} n^2/epsilon)$ which for sparse graphs is $tilde O(n^{2+1/2}/epsilon)$. Finally, we present a randomized $(1+epsilon)$-approximate data structure which works against an adaptive adversary; its total update time is $tilde O(m^{2/3}n^{5/3} + n^{8/3}/(m^{1/3}epsilon^2))$ which for sparse graphs is $tilde O(n^{2+1/3})$. Our exact data structure matches the total update time of the best randomized data structure by Baswana et al. [STOC02] and maintains the distance matrix in near-optimal time. Our approximate data structures improve upon the best data structures against an adaptive adversary which have $tilde{O}(mn^2)$ total update time [JACM81, STOC03].
In this paper, we study the average case complexity of the Unique Games problem. We propose a natural semi-random model, in which a unique game instance is generated in several steps. First an adversary selects a completely satisfiable instance of Un ique Games, then she chooses an epsilon-fraction of all edges, and finally replaces (corrupts) the constraints corresponding to these edges with new constraints. If all steps are adversarial, the adversary can obtain any (1-epsilon) satisfiable instance, so then the problem is as hard as in the worst case. In our semi-random model, one of the steps is random, and all other steps are adversarial. We show that known algorithms for unique games (in particular, all algorithms that use the standard SDP relaxation) fail to solve semi-random instances of Unique Games. We present an algorithm that with high probability finds a solution satisfying a (1-delta) fraction of all constraints in semi-random instances (we require that the average degree of the graph is Omega(log k). To this end, we consider a new non-standard SDP program for Unique Games, which is not a relaxation for the problem, and show how to analyze it. We present a new rounding scheme that simultaneously uses SDP and LP solutions, which we believe is of independent interest. Our result holds only for epsilon less than some absolute constant. We prove that if epsilon > 1/2, then the problem is hard in one of the models, the result assumes the 2-to-2 conjecture. Finally, we study semi-random instances of Unique Games that are at most (1-epsilon) satisfiable. We present an algorithm that with high probability, distinguishes between the case when the instance is a semi-random instance and the case when the instance is an (arbitrary) (1-delta) satisfiable instance if epsilon > c delta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا