ﻻ يوجد ملخص باللغة العربية
In contrast with imaging using position-resolving cameras, single-pixel imaging uses a bucket detector along with spatially structured illumination for image recovery. This emerging imaging technique is a promising candidate for a broad range of applications due to high signal-to-noise ratio (SNR) and sensitivity, and applicability in a wide range of frequency bands. Here, inspired by single-pixel imaging in the spatial domain, we demonstrate a temporal single-pixel imaging (TSPI) system that covers frequency bands including both terahertz (THz) and near-infrared (NIR) region. By implementing a programmable temporal fan-out (TFO) gate based on a digital micromirror device (DMD), we can deterministically prepare temporally structured pulses with a temporal sampling size down to 16.00$pm$0.01 fs. By inheriting the advantages in detection efficiency and sensitivity from spatial single-pixel imaging, TSPI enables the compressive recovery of a 5 fJ THz pulse and two NIR pulses with over 97$%$ fidelity. We demonstrate that the TSPI is robust against temporal distortions in the probe pulse train as well. As a direct application, we apply TSPI to machine-learning-aided THz spectroscopy and demonstrate a high sample identification accuracy (97.5$%$) even under low SNRs (SNR $sim$ 10).
We demonstrate single-pixel imaging in the spectral domain by encoding Fourier probe patterns onto the spectrum of a superluminescent laser diode using a programmable optical filter. As a proof-of-concept, we measure the wavelength-dependent transmis
Time-of-flight three dimensional imaging is an important tool for many applications, such as object recognition and remote sensing. Unlike conventional imaging approach using pixelated detector array, single-pixel imaging based on projected patterns,
Since the invention of digital cameras there has been a concerted drive towards detector arrays with higher spatial resolution. Microscanning is a technique that provides a final higher resolution image by combining multiple images of a lower resolut
We propose and experimentally demonstrate a high-efficiency single-pixel imaging (SPI) scheme by integrating time-correlated single-photon counting (TCSPC) with time-division multiplexing to acquire full-color images at extremely low light level. Thi
Under weak illumination, tracking and imaging moving object turns out to be hard. By spatially collecting the signal, single pixel imaging schemes promise the capability of image reconstruction from low photon flux. However, due to the requirement on