ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Weighted Robust LDA for Multiclass Classification with Edge Classes

316   0   0.0 ( 0 )
 نشر من قبل Xiaojun Chang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Linear discriminant analysis (LDA) is a popular technique to learn the most discriminative features for multi-class classification. A vast majority of existing LDA algorithms are prone to be dominated by the class with very large deviation from the others, i.e., edge class, which occurs frequently in multi-class classification. First, the existence of edge classes often makes the total mean biased in the calculation of between-class scatter matrix. Second, the exploitation of l2-norm based between-class distance criterion magnifies the extremely large distance corresponding to edge class. In this regard, a novel self-weighted robust LDA with l21-norm based pairwise between-class distance criterion, called SWRLDA, is proposed for multi-class classification especially with edge classes. SWRLDA can automatically avoid the optimal mean calculation and simultaneously learn adaptive weights for each class pair without setting any additional parameter. An efficient re-weighted algorithm is exploited to derive the global optimum of the challenging l21-norm maximization problem. The proposed SWRLDA is easy to implement, and converges fast in practice. Extensive experiments demonstrate that SWRLDA performs favorably against other compared methods on both synthetic and real-world datasets, while presenting superior computational efficiency in comparison with other techniques.

قيم البحث

اقرأ أيضاً

In this paper, we propose online algorithms for multiclass classification using partial labels. We propose two variants of Perceptron called Avg Perceptron and Max Perceptron to deal with the partial labeled data. We also propose Avg Pegasos and Max Pegasos, which are extensions of Pegasos algorithm. We also provide mistake bounds for Avg Perceptron and regret bound for Avg Pegasos. We show the effectiveness of the proposed approaches by experimenting on various datasets and comparing them with the standard Perceptron and Pegasos.
We consider the online multiclass linear classification under the bandit feedback setting. Beygelzimer, P{a}l, Sz{o}r{e}nyi, Thiruvenkatachari, Wei, and Zhang [ICML19] considered two notions of linear separability, weak and strong linear separability . When examples are strongly linearly separable with margin $gamma$, they presented an algorithm based on Multiclass Perceptron with mistake bound $O(K/gamma^2)$, where $K$ is the number of classes. They employed rational kernel to deal with examples under the weakly linearly separable condition, and obtained the mistake bound of $min(Kcdot 2^{tilde{O}(Klog^2(1/gamma))},Kcdot 2^{tilde{O}(sqrt{1/gamma}log K)})$. In this paper, we refine the notion of weak linear separability to support the notion of class grouping, called group weak linear separable condition. This situation may arise from the fact that class structures contain inherent grouping. We show that under this condition, we can also use the rational kernel and obtain the mistake bound of $Kcdot 2^{tilde{O}(sqrt{1/gamma}log L)})$, where $Lleq K$ represents the number of groups.
The 01 loss is robust to outliers and tolerant to noisy data compared to convex loss functions. We conjecture that the 01 loss may also be more robust to adversarial attacks. To study this empirically we have developed a stochastic coordinate descent algorithm for a linear 01 loss classifier and a single hidden layer 01 loss neural network. Due to the absence of the gradient we iteratively update coordinates on random subsets of the data for fixed epochs. We show our algorithms to be fast and comparable in accuracy to the linear support vector machine and logistic loss single hidden layer network for binary classification on several image benchmarks, thus establishing that our method is on-par in test accuracy with convex losses. We then subject them to accurately trained substitute model black box attacks on the same image benchmarks and find them to be more robust than convex counterparts. On CIFAR10 binary classification task between classes 0 and 1 with adversarial perturbation of 0.0625 we see that the MLP01 network loses 27% in accuracy whereas the MLP-logistic counterpart loses 83%. Similarly on STL10 and ImageNet binary classification between classes 0 and 1 the MLP01 network loses 21% and 20% while MLP-logistic loses 67% and 45% respectively. On MNIST that is a well-separable dataset we find MLP01 comparable to MLP-logistic and show under simulation how and why our 01 loss solver is less robust there. We then propose adversarial training for our linear 01 loss solver that significantly improves its robustness on MNIST and all other datasets and retains clean test accuracy. Finally we show practical applications of our method to deter traffic sign and facial recognition adversarial attacks. We discuss attacks with 01 loss, substitute model accuracy, and several future avenues like multiclass, 01 loss convolutions, and further adversarial training.
With the dramatic increase of dimensions in the data representation, extracting latent low-dimensional features becomes of the utmost importance for efficient classification. Aiming at the problems of unclear margin representation and difficulty in r evealing the data manifold structure in most of the existing linear discriminant methods, we propose a new discriminant feature extraction framework, namely Robust Locality-Aware Regression (RLAR). In our model, we introduce a retargeted regression to perform the marginal representation learning adaptively instead of using the general average inter-class margin. Besides, we formulate a new strategy for enhancing the local intra-class compactness of the data manifold, which can achieve the joint learning of locality-aware graph structure and desirable projection matrix. To alleviate the disturbance of outliers and prevent overfitting, we measure the regression term and locality-aware term together with the regularization term by the L2,1 norm. Further, forcing the row sparsity on the projection matrix through the L2,1 norm achieves the cooperation of feature selection and feature extraction. Then, we derive an effective iterative algorithm for solving the proposed model. The experimental results over a range of UCI data sets and other benchmark databases demonstrate that the proposed RLAR outperforms some state-of-the-art approaches.
114 - Jiaqi Zeng , Pengtao Xie 2020
Graph classification is a widely studied problem and has broad applications. In many real-world problems, the number of labeled graphs available for training classification models is limited, which renders these models prone to overfitting. To addres s this problem, we propose two approaches based on contrastive self-supervised learning (CSSL) to alleviate overfitting. In the first approach, we use CSSL to pretrain graph encoders on widely-available unlabeled graphs without relying on human-provided labels, then finetune the pretrained encoders on labeled graphs. In the second approach, we develop a regularizer based on CSSL, and solve the supervised classification task and the unsupervised CSSL task simultaneously. To perform CSSL on graphs, given a collection of original graphs, we perform data augmentation to create augmented graphs out of the original graphs. An augmented graph is created by consecutively applying a sequence of graph alteration operations. A contrastive loss is defined to learn graph encoders by judging whether two augmented graphs are from the same original graph. Experiments on various graph classification datasets demonstrate the effectiveness of our proposed methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا