ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust binary classification with the 01 loss

96   0   0.0 ( 0 )
 نشر من قبل Usman Roshan
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The 01 loss is robust to outliers and tolerant to noisy data compared to convex loss functions. We conjecture that the 01 loss may also be more robust to adversarial attacks. To study this empirically we have developed a stochastic coordinate descent algorithm for a linear 01 loss classifier and a single hidden layer 01 loss neural network. Due to the absence of the gradient we iteratively update coordinates on random subsets of the data for fixed epochs. We show our algorithms to be fast and comparable in accuracy to the linear support vector machine and logistic loss single hidden layer network for binary classification on several image benchmarks, thus establishing that our method is on-par in test accuracy with convex losses. We then subject them to accurately trained substitute model black box attacks on the same image benchmarks and find them to be more robust than convex counterparts. On CIFAR10 binary classification task between classes 0 and 1 with adversarial perturbation of 0.0625 we see that the MLP01 network loses 27% in accuracy whereas the MLP-logistic counterpart loses 83%. Similarly on STL10 and ImageNet binary classification between classes 0 and 1 the MLP01 network loses 21% and 20% while MLP-logistic loses 67% and 45% respectively. On MNIST that is a well-separable dataset we find MLP01 comparable to MLP-logistic and show under simulation how and why our 01 loss solver is less robust there. We then propose adversarial training for our linear 01 loss solver that significantly improves its robustness on MNIST and all other datasets and retains clean test accuracy. Finally we show practical applications of our method to deter traffic sign and facial recognition adversarial attacks. We discuss attacks with 01 loss, substitute model accuracy, and several future avenues like multiclass, 01 loss convolutions, and further adversarial training.



قيم البحث

اقرأ أيضاً

We consider the problem of learning linear classifiers when both features and labels are binary. In addition, the features are noisy, i.e., they could be flipped with an unknown probability. In Sy-De attribute noise model, where all features could be noisy together with same probability, we show that $0$-$1$ loss ($l_{0-1}$) need not be robust but a popular surrogate, squared loss ($l_{sq}$) is. In Asy-In attribute noise model, we prove that $l_{0-1}$ is robust for any distribution over 2 dimensional feature space. However, due to computational intractability of $l_{0-1}$, we resort to $l_{sq}$ and observe that it need not be Asy-In noise robust. Our empirical results support Sy-De robustness of squared loss for low to moderate noise rates.
220 - Jun Shu , Qian Zhao , Keyu Chen 2020
Robust loss minimization is an important strategy for handling robust learning issue on noisy labels. Current robust loss functions, however, inevitably involve hyperparameter(s) to be tuned, manually or heuristically through cross validation, which makes them fairly hard to be generally applied in practice. Besides, the non-convexity brought by the loss as well as the complicated network architecture makes it easily trapped into an unexpected solution with poor generalization capability. To address above issues, we propose a meta-learning method capable of adaptively learning hyperparameter in robust loss functions. Specifically, through mutual amelioration between robust loss hyperparameter and network parameters in our method, both of them can be simultaneously finely learned and coordinated to attain solutions with good generalization capability. Four kinds of SOTA robust loss functions are attempted to be integrated into our algorithm, and comprehensive experiments substantiate the general availability and effectiveness of the proposed method in both its accuracy and generalization performance, as compared with conventional hyperparameter tuning strategy, even with carefully tuned hyperparameters.
106 - Lei Feng , Senlin Shu , Nan Lu 2020
To alleviate the data requirement for training effective binary classifiers in binary classification, many weakly supervised learning settings have been proposed. Among them, some consider using pairwise but not pointwise labels, when pointwise label s are not accessible due to privacy, confidentiality, or security reasons. However, as a pairwise label denotes whether or not two data points share a pointwise label, it cannot be easily collected if either point is equally likely to be positive or negative. Thus, in this paper, we propose a novel setting called pairwise comparison (Pcomp) classification, where we have only pairs of unlabeled data that we know one is more likely to be positive than the other. Firstly, we give a Pcomp data generation process, derive an unbiased risk estimator (URE) with theoretical guarantee, and further improve URE using correction functions. Secondly, we link Pcomp classification to noisy-label learning to develop a progressive URE and improve it by imposing consistency regularization. Finally, we demonstrate by experiments the effectiveness of our methods, which suggests Pcomp is a valuable and practically useful type of pairwise supervision besides the pairwise label.
Linear discriminant analysis (LDA) is a popular technique to learn the most discriminative features for multi-class classification. A vast majority of existing LDA algorithms are prone to be dominated by the class with very large deviation from the o thers, i.e., edge class, which occurs frequently in multi-class classification. First, the existence of edge classes often makes the total mean biased in the calculation of between-class scatter matrix. Second, the exploitation of l2-norm based between-class distance criterion magnifies the extremely large distance corresponding to edge class. In this regard, a novel self-weighted robust LDA with l21-norm based pairwise between-class distance criterion, called SWRLDA, is proposed for multi-class classification especially with edge classes. SWRLDA can automatically avoid the optimal mean calculation and simultaneously learn adaptive weights for each class pair without setting any additional parameter. An efficient re-weighted algorithm is exploited to derive the global optimum of the challenging l21-norm maximization problem. The proposed SWRLDA is easy to implement, and converges fast in practice. Extensive experiments demonstrate that SWRLDA performs favorably against other compared methods on both synthetic and real-world datasets, while presenting superior computational efficiency in comparison with other techniques.
Classical approaches for one-class problems such as one-class SVM and isolation forest require careful feature engineering when applied to structured domains like images. State-of-the-art methods aim to leverage deep learning to learn appropriate fea tures via two main approaches. The first approach based on predicting transformations (Golan & El-Yaniv, 2018; Hendrycks et al., 2019a) while successful in some domains, crucially depends on an appropriate domain-specific set of transformations that are hard to obtain in general. The second approach of minimizing a classical one-class loss on the learned final layer representations, e.g., DeepSVDD (Ruff et al., 2018) suffers from the fundamental drawback of representation collapse. In this work, we propose Deep Robust One-Class Classification (DROCC) that is both applicable to most standard domains without requiring any side-information and robust to representation collapse. DROCC is based on the assumption that the points from the class of interest lie on a well-sampled, locally linear low dimensional manifold. Empirical evaluation demonstrates that DROCC is highly effective in two different one-class problem settings and on a range of real-world datasets across different domains: tabular data, images (CIFAR and ImageNet), audio, and time-series, offering up to 20% increase in accuracy over the state-of-the-art in anomaly detection. Code is available at https://github.com/microsoft/EdgeML.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا