ﻻ يوجد ملخص باللغة العربية
In this work, we study a recently proposed operational measure of nonlocality by Fonseca and Parisio~[Phys. Rev. A 92, 030101(R) (2015)] which describes the probability of violation of local realism under randomly sampled observables, and the strength of such violation as described by resistance to white noise admixture. While our knowledge concerning these quantities is well established from a theoretical point of view, the experimental counterpart is a considerably harder task and very little has been done in this field. It is caused by the lack of complete knowledge about the facets of the local polytope required for the analysis. In this paper, we propose a simple procedure towards experimentally determining both quantities for $N$-qubit pure states, based on the incomplete set of tight Bell inequalities. We show that the imprecision arising from this approach is of similar magnitude as the potential measurement errors. We also show that even with both a randomly chosen $N$-qubit pure state and randomly chosen measurement bases, a violation of local realism can be detected experimentally almost $100%$ of the time. Among other applications, our work provides a feasible alternative for the witnessing of genuine multipartite entanglement without aligned reference frames.
The nonlocal realistic theory might be the last cornerstone of classical physics confronting to the quantum theory, which was found mostly untenable in the bipartite system [Nature 446, 871 (2007)]. We extend the Leggett-type nonlocal realistic model
We investigate genuinely entangled $N$-qubit states with no $N$-partite correlations in the case of symmetric states. Using a tensor representation for mixed symmetric states, we obtain a simple characterization of the absence of $N$-partite correlat
Classical and quantum physics provide fundamentally different predictions about experiments with separate observers that do not communicate, a phenomenon known as quantum nonlocality. This insight is a key element of our present understanding of quan
We experimentally demonstrate, using qubits encoded in photon polarization, that if two parties share a single reference direction and use locally orthogonal measurements they will always violate a Bell inequality, up to experimental deficiencies. Th
Quantum key distribution (QKD) enables unconditionally secure communication guaranteed by the laws of physics. The last decades have seen tremendous efforts in making this technology feasible under real-life conditions, with implementations bridging