ﻻ يوجد ملخص باللغة العربية
We investigate genuinely entangled $N$-qubit states with no $N$-partite correlations in the case of symmetric states. Using a tensor representation for mixed symmetric states, we obtain a simple characterization of the absence of $N$-partite correlations. We show that symmetric states with no $N$-partite correlations cannot exist for an even number of qubits. We fully identify the set of genuinely entangled symmetric states with no $N$-partite correlations in the case of three qubits, and in the case of rank-2 states. We present a general procedure to construct families for an arbitrary odd number of qubits.
I generalize the concept of balancedness to qudits with arbitrary dimension $d$. It is an extension of the concept of balancedness in New J. Phys. {bf 12}, 075025 (2010) [1]. At first, I define maximally entangled states as being the stochastic state
Entanglement in symmetric quantum states and the theory of copositive matrices are intimately related concepts. For the simplest symmetric states, i.e., the diagonal symmetric (DS) states, it has been shown that there exists a correspondence between
Suppose two distant observers Alice and Bob share a pure biparticle entangled state secretly chosen from a set, it is shown that Alice (Bob) can probabilistic concentrate the state to a maximally entangled state by applying local operations and class
We show that spin squeezing criteria commonly used for entanglement detection can be erroneous, if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further
We experimentally prepare a new type of continuous variable genuine four-partite entangled states, the quantum correlation property of which is different from that of the four-mode GHZ and cluster states, and which has not any qubit counterpart to be