ﻻ يوجد ملخص باللغة العربية
We experimentally demonstrate, using qubits encoded in photon polarization, that if two parties share a single reference direction and use locally orthogonal measurements they will always violate a Bell inequality, up to experimental deficiencies. This contrasts with the standard view of Bell inequalities in which the parties need to share a complete reference frame for their measurements. Furthermore, we experimentally demonstrate that as the reference direction degrades the probability of violating a Bell inequality decreases smoothly to (39.7 +/- 0.1) % in the limiting case that the observers do not share a reference direction. This result promises simplified distribution of entanglement between separated parties, with applications in fundamental investigations of quantum physics and tasks such as quantum communication.
Non-classical correlations arising in complex quantum networks are attracting growing interest, both from a fundamental perspective and for potential applications in information processing. In particular, in an entanglement swapping scenario a new ki
Simply and reliably detecting and quantifying entanglement outside laboratory conditions will be essential for future quantum information technologies. Here we address this issue by proposing a method for generating expressions which can perform this
We give the complete list of 175 facet Bell inequalities for the case where Alice and Bob each choose their measurements from a set of four binary outcome measurements. For each inequality we compute the maximum quantum violation for qubits, the resi
We demonstrate a novel approach of violating position dependent Bell inequalities by photons emitted via independent photon sources in free space. We trace this violation back to path entanglement created a posteriori by the selection of modes due to the process of detection.
Bell inequalities are important tools in contrasting classical and quantum behaviors. To date, most Bell inequalities are linear combinations of statistical correlations between remote parties. Nevertheless, finding the classical and quantum mechanic