ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant strain gradient elasticity in SrTiO3 membranes: bending versus stretching

296   0   0.0 ( 0 )
 نشر من قبل Varun Harbola
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Youngs modulus determines the mechanical loads required to elastically stretch a material, and also, the loads required to bend it, given that bending stretches one surface while compressing the opposite one. Flexoelectric materials have the additional property of becoming electrically polarized when bent. While numerous studies have characterized this flexoelectric coupling, its impact on the mechanical response, due to the energy cost of polarization upon bending, is largely unexplored. This intriguing contribution of strain gradient elasticity is expected to become visible at small length scales where strain gradients are geometrically enhanced, especially in high permittivity insulators. Here we present nano-mechanical measurements of freely suspended SrTiO3 membrane drumheads. We observe a striking non-monotonic thickness dependence of Youngs modulus upon small deflections. Furthermore, the modulus inferred from a predominantly bending deformation is three times larger than that of a predominantly stretching deformation for membranes thinner than 20 nm. In this regime we extract a giant strain gradient elastic coupling of ~2.2e-6 N, which could be used in new operational regimes of nano-electro-mechanics.



قيم البحث

اقرأ أيضاً

195 - P. Zubko , G. Catalan , A. Buckley 2007
Piezoelectricity is inherent only in noncentrosymmetric materials, but a piezoelectric response can also be obtained in centrosymmetric crystals if subjected to inhomogeneous deformation. This phenomenon, known as flexoelectricity, affects the functi onal properties of insulators, particularly thin films of high permittivity materials. We have measured strain-gradient-induced polarization in single crystals of paraelectric SrTiO$_3$ as a function of temperature and orientation down to and below the 105 K phase transition. Estimates were obtained for all the components of the flexoelectric tensor, and calculations based on these indicate that local polarization around defects in SrTiO$_3$ may exceed the largest ferroelectric polarizations. A sign reversal of the flexoelectric response detected below the phase transition suggests that the ferroelastic domain walls of SrTiO$_3$ may be polar.
Coupling between axial and torsional degrees of freedom often modifies the conformation and expression of natural and synthetic filamentous aggregates. Recent studies on chiral single-walled carbon nanotubes and B-DNA reveal a reversal in the sign of the twist-stretch coupling at large strains. The similarity in the response in these two distinct supramolecular assemblies and at high strains suggests a fundamental, chirality dependent non-linear elastic behaviour. Here, we seek the link between the microscopic origin of the non-linearities and the effective twist-stretch coupling using energy based theoretical frameworks and model simulations. Our analysis reveals a sensitive interplay between the deformation energetics and the sign of the coupling, highlighting robust design principles that determine both the sign and extent of these couplings. These design principles have been already exploited by Nature to dynamically engineer such couplings, and have broad implications in mechanically coupled actuation, propulsion and transport in biology and technology.
Advances in complex oxide heteroepitaxy have highlighted the enormous potential of utilizing strain engineering via lattice mismatch to control ferroelectricity in thin-film heterostructures. This approach, however, lacks the ability to produce large and continuously variable strain states, thus limiting the potential for designing and tuning the desired properties of ferroelectric films. Here, we observe and explore dynamic strain-induced ferroelectricity in SrTiO$_3$ by laminating freestanding oxide films onto a stretchable polymer substrate. Using a combination of scanning probe microscopy, optical second harmonic generation measurements, and atomistic modeling, we demonstrate robust room-temperature ferroelectricity in SrTiO$_3$ with 2.0% uniaxial tensile strain, corroborated by the notable features of 180{deg} ferroelectric domains and an extrapolated transition temperature of 400 K. Our work reveals the enormous potential of employing oxide membranes to create and enhance ferroelectricity in environmentally benign lead-free oxides, which hold great promise for applications ranging from non-volatile memories and microwave electronics.
Theoretical studies of nearly spherical vesicles and microemulsion droplets, that present typical examples for thermally-excited systems that are subject to constraints, are reviewed. We consider the shape fluctuations of such systems constrained by fixed area $A$ and fixed volume $V$, whose geometry is presented in terms of scalar spherical harmonics. These constraints can be incorporated in the theory in different ways. After an introductory review of the two approaches: with an exactly fixed by delta-function membrane area $A$ [Seifert, Z. Phys. B, 97, 299, (1995)] or approximatively by means of a Lagrange multiplier $sigma$ conjugated to $A$ [Milner and Safran, Phys. Rev. A, 36, 4371 (1987)], we discuss the determined role of the stretching effects, that has been announced in the framework of a model containing stretching energy term, expressed via the membrane vesicle tension [Bivas and Tonchev, Phys.Rev.E, 100, 022416 (2019)]. Since the fluctuation spectrum for the used Hamiltonian is not exactly solvable an approximating method based on the Bogoliubov inequalities for the free energy has been developed. The area constraint in the last approach appears as a self-consistent equation for the membrane tension. In the general case this equation is intractable analytically. However, much insight into the physics behind can be obtained either imposing some restrictions on the values of the model parameters, or studying limiting cases, in which the self-consistent equation is solved. Implications for the equivalence of ensembles have been discussed as well.
Single-crystalline membranes of functional materials enable the tuning of properties via extreme strain states; however, conventional routes for producing membranes require the use of sacrificial layers and chemical etchants, which can both damage th e membrane and limit the ability to make them ultrathin. Here we demonstrate the epitaxial growth of the cubic Heusler compound GdPtSb on graphene-terminated Al$_2$O$_3$ substrates. Despite the presence of the graphene interlayer, the Heusler films have epitaxial registry to the underlying sapphire, as revealed by x-ray diffraction, reflection high energy electron diffraction, and transmission electron microscopy. The weak Van der Waals interactions of graphene enable mechanical exfoliation to yield free-standing GdPtSb membranes, which form ripples when transferred to a flexible polymer handle. Whereas unstrained GdPtSb is antiferromagnetic, measurements on rippled membranes show a spontaneous magnetic moment at room temperature, with a saturation magnetization of 5.2 bohr magneton per Gd. First-principles calculations show that the coupling to homogeneous strain is too small to induce ferromagnetism, suggesting a dominant role for strain gradients. Our membranes provide a novel platform for tuning the magnetic properties of intermetallic compounds via strain (piezomagnetixm and magnetostriction) and strain gradients (flexomagnetism).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا