ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain dependent twist-stretch elasticity in chiral filaments

101   0   0.0 ( 0 )
 نشر من قبل Moneesh Upmanyu
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coupling between axial and torsional degrees of freedom often modifies the conformation and expression of natural and synthetic filamentous aggregates. Recent studies on chiral single-walled carbon nanotubes and B-DNA reveal a reversal in the sign of the twist-stretch coupling at large strains. The similarity in the response in these two distinct supramolecular assemblies and at high strains suggests a fundamental, chirality dependent non-linear elastic behaviour. Here, we seek the link between the microscopic origin of the non-linearities and the effective twist-stretch coupling using energy based theoretical frameworks and model simulations. Our analysis reveals a sensitive interplay between the deformation energetics and the sign of the coupling, highlighting robust design principles that determine both the sign and extent of these couplings. These design principles have been already exploited by Nature to dynamically engineer such couplings, and have broad implications in mechanically coupled actuation, propulsion and transport in biology and technology.



قيم البحث

اقرأ أيضاً

A new model of crystal growth is presented that describes the phenomena on atomic length and diffusive time scales. The former incorporates elastic and plastic deformation in a natural manner, and the latter enables access to times scales much larger than conventional atomic methods. The model is shown to be consistent with the predictions of Read and Shockley for grain boundary energy, and Matthews and Blakeslee for misfit dislocations in epitaxial growth.
Youngs modulus determines the mechanical loads required to elastically stretch a material, and also, the loads required to bend it, given that bending stretches one surface while compressing the opposite one. Flexoelectric materials have the addition al property of becoming electrically polarized when bent. While numerous studies have characterized this flexoelectric coupling, its impact on the mechanical response, due to the energy cost of polarization upon bending, is largely unexplored. This intriguing contribution of strain gradient elasticity is expected to become visible at small length scales where strain gradients are geometrically enhanced, especially in high permittivity insulators. Here we present nano-mechanical measurements of freely suspended SrTiO3 membrane drumheads. We observe a striking non-monotonic thickness dependence of Youngs modulus upon small deflections. Furthermore, the modulus inferred from a predominantly bending deformation is three times larger than that of a predominantly stretching deformation for membranes thinner than 20 nm. In this regime we extract a giant strain gradient elastic coupling of ~2.2e-6 N, which could be used in new operational regimes of nano-electro-mechanics.
Soft-elasticity in monodomain liquid crystal elastomers (LCEs) is promising for impact-absorbing applications where strain energy is ideally absorbed at constant stress. Conventionally, compressive and impact studies on LCEs have not been performed g iven the notorious difficulty synthesizing sufficiently large monodomain devices. Here we demonstrate 3D printing bulk ($>cm^3$) monodomain LCE devices using direct ink writing and study their compressive soft-elasticity over 8 decades of strain rate. At quasi-static rates, the monodomain soft-elastic LCE dissipated 45% of strain energy while comparator materials dissipated less than 20%. At strain rates up to $3000~s^{-1}$, our soft-elastic monodomain LCE consistently performed closest to an ideal-impact absorber. Drop testing reveals soft-elasticity as a likely mechanism for effectively reducing the severity of impacts -- with soft elastic LCEs offering a Gadd Severity Index 40% lower than a comparable isotropic elastomer. Lastly, we demonstrate tailoring deformation and buckling behavior in monodomain LCEs via the printed director orientation.
While most solids expand when heated, some materials show the opposite behavior: negative thermal expansion (NTE). In polymers and biomolecules, NTE originates from the entropic elasticity of an ideal, freely-jointed chain. The origin of NTE in solid s has been widely believed to be different. Our neutron scattering study of a simple cubic NTE material, ScF3, overturns this consensus. We observe that the correlation in the positions of the neighboring fluorine atoms rapidly fades on warming, indicating an uncorrelated thermal motion constrained by the rigid Sc-F bonds. This leads us to a quantitative theory of NTE in terms of entropic elasticity of a floppy network crystal, which is in remarkable agreement with experimental results. We thus reveal the formidable universality of the NTE phenomenon in soft and hard matter.
The field of two-dimensional (2D) materials has expanded to multilayered systems where electronic, optical, and mechanical properties change-often dramatically-with stacking order, thickness, twist, and interlayer spacing [1-5]. For transition metal dichalcogenides (TMDs), bond coordination within a single van der Waals layer changes the out-of-plane symmetry that can cause metal-insulator transitions [1, 6] or emergent quantum behavior [7]. Discerning these structural order parameters is often difficult using real-space measurements, however, we show 2D materials have distinct, conspicuous three-dimensional (3D) structure in reciprocal space described by near infinite oscillating Bragg rods. Combining electron diffraction and specimen tilt we probe Bragg rods in all three dimensions to identify multilayer structure with sub-Angstrom precision across several 2D materials-including TMDs (MoS2, TaSe2, TaS2) and multilayer graphene. We demonstrate quantitative determination of key structural parameters such as surface roughness, inter- & intra-layer spacings, stacking order, and interlayer twist using a rudimentary transmission electron microscope (TEM). We accurately characterize the full interlayer stacking order of multilayer graphene (1-, 2-, 6-, 12-layers) as well the intralayer structure of MoS2 and extract a chalcogen-chalcogen layer spacing of 3.07 +/- 0.11 Angstrom. Furthermore, we demonstrate quick identification of multilayer rhombohedral graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا