ترغب بنشر مسار تعليمي؟ اضغط هنا

Tilted elastic lines with columnar and point disorder, non-Hermitian quantum mechanics and spiked random matrices: pinning and localization

115   0   0.0 ( 0 )
 نشر من قبل Alexandre Krajenbrink
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the problem of an elastic line (e.g. a vortex line in a superconductor) subject to both columnar disorder and point disorder in dimension $d=1+1$. Upon applying a transverse field, a delocalization transition is expected, beyond which the line is tilted macroscopically. We investigate this transition in the fixed tilt angle ensemble and within a one-way model where backward jumps are neglected. From recent results about directed polymers and their connections to random matrix theory, we find that for a single line and a single strong defect this transition in presence of point disorder coincides with the Baik-Ben Arous-Peche (BBP) transition for the appearance of outliers in the spectrum of a perturbed random matrix in the GUE. This transition is conveniently described in the polymer picture by a variational calculation. In the delocalized phase, the ground state energy exhibits Tracy-Widom fluctuations. In the localized phase we show, using the variational calculation, that the fluctuations of the occupation length along the columnar defect are described by $f_{KPZ}$, a distribution which appears ubiquitously in the Kardar-Parisi-Zhang universality class. We then consider a smooth density of columnar defect energies. Depending on how this density vanishes at its lower edge we find either (i) a delocalized phase only (ii) a localized phase with a delocalization transition. We analyze this transition which is an infinite-rank extension of the BBP transition. The fluctuations of the ground state energy of a single elastic line in the localized phase (for fixed columnar defect energies) are described by a Fredholm determinant based on a new kernel. The case of many columns and many non-intersecting lines, relevant for the study of the Bose glass phase, is also analyzed. The ground state energy is obtained using free probability and the Burgers equation.

قيم البحث

اقرأ أيضاً

Using the properties of random M{o}bius transformations, we investigate the statistical properties of the reflection coefficient in a random chain of lossy scatterers. We explicitly determine the support of the distribution and the condition for cohe rent perfect absorption to be possible. We show that at its boundaries the distribution has Lifshits-like tails, which we evaluate. We also obtain the extent of penetration of incoming waves into the medium via the Lyapunov exponent. Our results agree well when compared to numerical simulations in a specific random system.
When random walks on a square lattice are biased horizontally to move solely to the right, the probability distribution of their algebraic area can be exactly obtained. We explicitly map this biased classical random system on a non hermitian Hofstadt er-like quantum model where a charged particle on a square lattice coupled to a perpendicular magnetic field hopps only to the right. In the commensurate case when the magnetic flux per unit cell is rational, an exact solution of the quantum model is obtained. Periodicity on the lattice allows to relate traces of the Nth power of the Hamiltonian to probability distribution generating functions of biased walks of length N.
We propose a measure, which we call the dissipative spectral form factor (DSFF), to characterize the spectral statistics of non-Hermitian (and non-Unitary) matrices. We show that DSFF successfully diagnoses dissipative quantum chaos, and reveals corr elations between real and imaginary parts of the complex eigenvalues up to arbitrary energy (and time) scale. Specifically, we provide the exact solution of DSFF for the complex Ginibre ensemble (GinUE) and for a Poissonian random spectrum (Poisson) as minimal models of dissipative quantum chaotic and integrable systems respectively. For dissipative quantum chaotic systems, we show that DSFF exhibits an exact rotational symmetry in its complex time argument $tau$. Analogous to the spectral form factor (SFF) behaviour for Gaussian unitary ensemble, DSFF for GinUE shows a dip-ramp-plateau behavior in $|tau|$: DSFF initially decreases, increases at intermediate time scales, and saturates after a generalized Heisenberg time which scales as the inverse mean level spacing. Remarkably, for large matrix size, the ramp of DSFF for GinUE increases quadratically in $|tau|$, in contrast to the linear ramp in SFF for Hermitian ensembles. For dissipative quantum integrable systems, we show that DSFF takes a constant value except for a region in complex time whose size and behavior depends on the eigenvalue density. Numerically, we verify the above claims and additionally compute DSFF for real and quaternion real Ginibre ensembles. As a physical example, we consider the quantum kicked top model with dissipation, and show that it falls under the universality class of GinUE and Poisson as the `kick is switched on or off. Lastly, we study spectral statistics of ensembles of random classical stochastic matrices or Markov chains, and show that these models fall under the class of Ginibre ensemble.
127 - Yagmur Kati 2021
The interplay of fluctuations, ergodicity, and disorder in many-body interacting systems has been striking attention for half a century, pivoted on two celebrated phenomena: Anderson localization predicted in disordered media, and Fermi-Pasta-Ulam-Ts ingou (FPUT) recurrence observed in a nonlinear system. The destruction of Anderson localization by nonlinearity and the recovery of ergodicity after long enough computational times lead to more questions. This thesis is devoted to contributing to the insight of the nonlinear system dynamics in and out of equilibrium. Focusing mainly on the GP lattice, we investigated elementary fluctuations close to zero temperature, localization properties, the chaotic subdiffusive regimes, and the non-equipartition of energy in non-Gibbs regime. Initially, we probe equilibrium dynamics in the ordered GP lattice and report a weakly non-ergodic dynamics, and an ergodic part in the non-Gibbs phase that implies the Gibbs distribution should be modified. Next, we include disorder in GP lattice, and build analytical expressions for the thermodynamic properties of the ground state, and identify a Lifshits glass regime where disorder dominates over the interactions. In the opposite strong interaction regime, we investigate the elementary excitations above the ground state and found a dramatic increase of the localization length of Bogoliubov modes (BM) with increasing particle density. Finally, we study non-equilibrium dynamics with disordered GP lattice by performing novel energy and norm density resolved wave packet spreading. In particular, we observed strong chaos spreading over several decades, and identified a Lifshits phase which shows a significant slowing down of sub-diffusive spreading.
We investigate the behavior of nonequilibrium phase transitions under the influence of disorder that locally breaks the symmetry between two symmetrical macroscopic absorbing states. In equilibrium systems such random-field disorder destroys the phas e transition in low dimensions by preventing spontaneous symmetry breaking. In contrast, we show here that random-field disorder fails to destroy the nonequilibrium phase transition of the one- and two-dimensional generalized contact process. Instead, it modifies the dynamics in the symmetry-broken phase. Specifically, the dynamics in the one-dimensional case is described by a Sinai walk of the domain walls between two different absorbing states. In the two-dimensional case, we map the dynamics onto that of the well studied low-temperature random-field Ising model. We also study the critical behavior of the nonequilibrium phase transition and characterize its universality class in one dimension. We support our results by large-scale Monte Carlo simulations, and we discuss the applicability of our theory to other systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا