ترغب بنشر مسار تعليمي؟ اضغط هنا

Random field disorder at an absorbing state transition in one and two dimensions

97   0   0.0 ( 0 )
 نشر من قبل Hatem Barghathi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the behavior of nonequilibrium phase transitions under the influence of disorder that locally breaks the symmetry between two symmetrical macroscopic absorbing states. In equilibrium systems such random-field disorder destroys the phase transition in low dimensions by preventing spontaneous symmetry breaking. In contrast, we show here that random-field disorder fails to destroy the nonequilibrium phase transition of the one- and two-dimensional generalized contact process. Instead, it modifies the dynamics in the symmetry-broken phase. Specifically, the dynamics in the one-dimensional case is described by a Sinai walk of the domain walls between two different absorbing states. In the two-dimensional case, we map the dynamics onto that of the well studied low-temperature random-field Ising model. We also study the critical behavior of the nonequilibrium phase transition and characterize its universality class in one dimension. We support our results by large-scale Monte Carlo simulations, and we discuss the applicability of our theory to other systems.



قيم البحث

اقرأ أيضاً

143 - J. A. Hoyos 2008
The effects of quenched disorder on nonequilibrium phase transitions in the directed percolation universality class are revisited. Using a strong-disorder energy-space renormalization group, it is shown that for any amount of disorder the critical be havior is controlled by an infinite-randomness fixed point in the universality class of the random transverse-field Ising models. The experimental relevance of our results are discussed.
We study bond percolation on a one-parameter family of hierarchical small-world network, and find a meta-transition between the inverted BKT transition and the abrupt transition driven by changing the network topology. It is found that the order para meter is continuous and fractal exponent is discontinuous in the inverted BKT transition, and oppositely, the former is discontinuous and the latter is continuous in the abrupt transition. The gaps of the order parameter and fractal exponent in each transition go to vanish as approaching the meta-transition point. This point corresponds to a marginal power-law transition. In the renormalization group formalism, this meta-transition corresponds to the transition between transcritical and saddle-node bifurcations of the fixed point via a pitchfork bifurcation.
88 - D. J. Priour Jr , 2000
We study a one-dimensional chain of corner-sharing triangles with antiferromagnetic Ising interactions along its bonds. Classically, this system is highly frustrated with an extensive entropy at T = 0 and exponentially decaying spin correlations. We show that the introduction of a quantum dynmamics via a transverse magnetic field removes the entropy and opens a gap, but leaves the ground state disordered at all values of the transverse field, thereby providing an analog of the disorder by disorder scenario first proposed by Anderson and Fazekas in their search for resonating valence bond states. Our conclusion relies on exact diagonalization calculations as well as on the analysis of a 14th order series expansion about the large transverse field limit. This test suggests that the series method could be used to search for other instances of quantum disordered states in frustrated transverse field magnets in higher dimensions.
129 - M. Pleimling 2004
In the two-dimensional Ising model weak random surface field is predicted to be a marginally irrelevant perturbation at the critical point. We study this question by extensive Monte Carlo simulations for various strength of disorder. The calculated e ffective (temperature or size dependent) critical exponents fit with the field-theoretical results and can be interpreted in terms of the predicted logarithmic corrections to the pure systems critical behaviour.
Two numerical strategies based on the Wang-Landau and Lee entropic sampling schemes are implemented to investigate the first-order transition features of the 3D bimodal ($pm h$) random-field Ising model at the strong disorder regime. We consider simp le cubic lattices with linear sizes in the range $L=4-32$ and simulate the system for two values of the disorder strength: $h=2$ and $h=2.25$. The nature of the transition is elucidated by applying the Lee-Kosterlitz free-energy barrier method. Our results indicate that, despite the strong first-order-like characteristics, the transition remains continuous, in disagreement with the early mean-field theory prediction of a tricritical point at high values of the random-field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا