ﻻ يوجد ملخص باللغة العربية
Using the properties of random M{o}bius transformations, we investigate the statistical properties of the reflection coefficient in a random chain of lossy scatterers. We explicitly determine the support of the distribution and the condition for coherent perfect absorption to be possible. We show that at its boundaries the distribution has Lifshits-like tails, which we evaluate. We also obtain the extent of penetration of incoming waves into the medium via the Lyapunov exponent. Our results agree well when compared to numerical simulations in a specific random system.
We revisit the problem of an elastic line (e.g. a vortex line in a superconductor) subject to both columnar disorder and point disorder in dimension $d=1+1$. Upon applying a transverse field, a delocalization transition is expected, beyond which the
We present here for the first time a unifying perspective for the lack of equipartition in non-linear ordered systems and the low temperature phase-space fragmentation in disordered systems. We demonstrate that they are just two manifestation of the
In the realm of Boltzmann-Gibbs (BG) statistical mechanics and its q-generalisation for complex systems, we analyse observed sequences of q-triplets, or q-doublets if one of them is the unity, in terms of cycles of successive Mobius transforms of the
We consider two models with disorder dominated critical points and study the distribution of clusters which are confined in strips and touch one or both boundaries. For the classical random bond Potts model in the large-q limit we study optimal Fortu
Using the replica method, we develop an analytical approach to compute the characteristic function for the probability $mathcal{P}_N(K,lambda)$ that a large $N times N$ adjacency matrix of sparse random graphs has $K$ eigenvalues below a threshold $l