ﻻ يوجد ملخص باللغة العربية
In this work, we present a neuromorphic system that combines for the first time a neural recording headstage with a signal-to-spike conversion circuit and a multi-core spiking neural network (SNN) architecture on the same die for recording, processing, and detecting High Frequency Oscillations (HFO), which are biomarkers for the epileptogenic zone. The device was fabricated using a standard 0.18$mu$m CMOS technology node and has a total area of 99mm$^{2}$. We demonstrate its application to HFO detection in the iEEG recorded from 9 patients with temporal lobe epilepsy who subsequently underwent epilepsy surgery. The total average power consumption of the chip during the detection task was 614.3$mu$W. We show how the neuromorphic system can reliably detect HFOs: the system predicts postsurgical seizure outcome with state-of-the-art accuracy, specificity and sensitivity (78%, 100%, and 33% respectively). This is the first feasibility study towards identifying relevant features in intracranial human data in real-time, on-chip, using event-based processors and spiking neural networks. By providing neuromorphic intelligence to neural recording circuits the approach proposed will pave the way for the development of systems that can detect HFO areas directly in the operation room and improve the seizure outcome of epilepsy surgery.
Predicting post-operative seizure freedom using functional correlation networks derived from interictal intracranial EEG has shown some success. However, there are important challenges to consider. 1: electrodes physically closer to each other natura
Mind-wandering (MW), which usually defined as a lapse of attention, occurs between 20%-40% of the time, has negative effects on our daily life. Therefore, detecting when MW occurs can prevent us from those negative outcomes resulting from MW, such as
Neuromorphic systems typically employ current-mode circuits that model neural dynamics and produce output currents that range from few pico-Amperes to hundreds of micro-Amperes. On-line real-time monitoring of the signals produced by these circuits i
In this paper, a real-time signal processing frame-work based on a 60 GHz frequency-modulated continuous wave (FMCW) radar system to recognize gestures is proposed. In order to improve the robustness of the radar-based gesture recognition system, the
The design of high-resolution and cross-term (CT) free time-frequency distributions (TFDs) has been an open problem. Classical kernel based methods are limited by the trade-off between TFD resolution and CT suppression, even under optimally derived p