ﻻ يوجد ملخص باللغة العربية
Neuromorphic systems typically employ current-mode circuits that model neural dynamics and produce output currents that range from few pico-Amperes to hundreds of micro-Amperes. On-line real-time monitoring of the signals produced by these circuits is crucial, for prototyping and debugging purposes, as well as for analyzing and understanding the network dynamics and computational properties. To this end, we propose a compact on-chip auto-scaling Current to Frequency Converter (CFC) for real-time monitoring of analog currents in mixed-signal/analog neuromorphic electronic systems. The proposed CFC is a self-timed asynchronous circuit that has a wide dynamic input range of up to 6 decades, ranging from pico-Amps to micro-Amps, with high current measurement sensitivity. To produce a linear output frequency response, while properly covering the wide dynamic input range, the circuit automatically detects the scale of the input current and adjusts the scale of its output firing rate accordingly. Here we describe the proposed circuit and present experimental results measured from multiple instances of the circuit, implemented using a standard 180 nm CMOS process, and interfaced to silicon neuron and synapse circuits for real-time current monitoring. We demonstrate how the circuit is suitable for measuring neural dynamics by showing the converted response properties of the chip silicon neurons and synapses as they are stimulated by input spikes.
High-speed high-resolution Analog-to-Digital Conversion is the key part for waveform digitization in physics experiments and many other domains. This paper presents a new fully digital correction of mismatch errors among the channels in Time Interlea
As processes continue to scale aggressively, the design of deep sub-micron, mixed-signal design is becoming more and more challenging. In this paper we present an analysis of scaling multi-core mixed-signal neuromorphic processors to advanced 28 nm F
This work presents the design and analysis of a mixed-signal neuron (MS-N) for convolutional neural networks (CNN) and compares its performance with a digital neuron (Dig-N) in terms of operating frequency, power and noise. The circuit-level implemen
In this work, we present a neuromorphic system that combines for the first time a neural recording headstage with a signal-to-spike conversion circuit and a multi-core spiking neural network (SNN) architecture on the same die for recording, processin
Several analog and digital brain-inspired electronic systems have been recently proposed as dedicated solutions for fast simulations of spiking neural networks. While these architectures are useful for exploring the computational properties of large-