ﻻ يوجد ملخص باللغة العربية
Gallium selenide (GaSe) is one of layered group-III metal monochalcogenides, which has an indirect bandgap in monolayer and direct bandgap in bulk unlike other conventional transition metal dichalcogenides (TMDs) such as MoX2 and WX2 (X=S and Se). Four polytypes of bulk GaSe, designated as beta-, epsilon-, gamma-, and delta-GaSe, have been reported. Since different polytypes result in different optical and electrical properties even for the same thickness, identifying the polytype is essential in utilizing this material for various optoelectronic applications. We performed polarized Raman measurement on GaSe and found different ultra-low-frequency Raman spectra of inter-layer vibrational modes even for the same thickness due to different stacking sequences of the polytypes. By comparing the ultra-low-frequency Raman spectra with theoretical calculations and high-resolution electron microscopy measurements, we established the correlation between the ultra-low-frequency Raman spectra and the stacking sequences for trilayer GaSe. We further found that the AB-type stacking is more stable than the AA-type stacking in GaSe.
Here, the synthesis of Molybdenum Disulphide (MoS2) flakes by means of anodic atmospheric arc discharge is reported for the first time. The vertical electrode configuration consisted of a compound anode (hollow graphite anode filled with MoS2 powder)
Superconductivity in group IV semiconductors is desired for hybrid devices combining both semiconducting and superconducting properties. Following boron doped diamond and Si, superconductivity has been observed in gallium doped Ge, however the obtain
A single atomic slice of {alpha}-tin-stanene-has been predicted to host quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. While recent research has intensively focused on monola
The two-dimensional semiconductor MoS2 in its mono- and few-layer form is expected to have a significant exciton binding energy of several 100 meV, leading to the consensus that excitons are the primary photoexcited species. Nevertheless, even single
Long-range magnetic orders in atomically thin ferromagnetic CrI3 give rise to new fascinating physics and application perspectives. The physical properties of two-dimensional (2D) ferromagnetism CrI3 are significantly influenced by interlayer spacing