ﻻ يوجد ملخص باللغة العربية
A single atomic slice of {alpha}-tin-stanene-has been predicted to host quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. While recent research has intensively focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we unexpectedly discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk {alpha}-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. In-situ angle resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. Interestingly, the theory also indicates the existence of a topologically nontrivial band. Our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.
Stanene was proposed to be a quantum spin hall insulator containing topological edges states and a time reversal invariant topological superconductor hosting helical Majorana edge mode. Recently, experimental evidences of existence of topological edg
The two-dimensional semiconductor MoS2 in its mono- and few-layer form is expected to have a significant exciton binding energy of several 100 meV, leading to the consensus that excitons are the primary photoexcited species. Nevertheless, even single
Gallium selenide (GaSe) is one of layered group-III metal monochalcogenides, which has an indirect bandgap in monolayer and direct bandgap in bulk unlike other conventional transition metal dichalcogenides (TMDs) such as MoX2 and WX2 (X=S and Se). Fo
Long-range magnetic orders in atomically thin ferromagnetic CrI3 give rise to new fascinating physics and application perspectives. The physical properties of two-dimensional (2D) ferromagnetism CrI3 are significantly influenced by interlayer spacing
Antimonene -- a single layer of antimony atoms -- and its few layer forms are among the latest additions to the 2D mono-elemental materials family. Numerous predictions and experimental evidence of its remarkable properties including (opto)electronic