ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning Chern Number in Quantum Anomalous Hall Insulators

84   0   0.0 ( 0 )
 نشر من قبل Cui-Zu Chang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has quantized Hall resistance of h/Ce2 and vanishing longitudinal resistance under zero magnetic field, where C is called the Chern number. The QAH effect has been realized in magnetic topological insulators (TIs) and magic-angle twisted bilayer graphene. Despite considerable experimental efforts, the zero magnetic field QAH effect has so far been realized only for C = 1. Here we used molecular beam epitaxy to fabricate magnetic TI multilayers and realized the QAH effect with tunable Chern number C up to 5. The Chern number of these QAH insulators is tuned by varying the magnetic doping concentration or the thickness of the interior magnetic TI layers in the multilayer samples. A theoretical model is developed to understand our experimental observations and establish phase diagrams for QAH insulators with tunable Chern numbers. The realization of QAH insulators with high tunable Chern numbers facilitates the potential applications of dissipationless chiral edge currents in energy-efficient electronic devices and opens opportunities for developing multi-channel quantum computing and higher-capacity chiral circuit interconnects.


قيم البحث

اقرأ أيضاً

We report a proximity-driven large anomalous Hall effect in all-telluride heterostructures consisting of ferromagnetic insulator Cr2Ge2Te6 and topological insulator (Bi,Sb)2Te3. Despite small magnetization in the (Bi,Sb)2Te3 layer, the anomalous Hall conductivity reaches a large value of 0.2e2/h in accord with a ferromagnetic response of the Cr2Ge2Te6. The results show that the exchange coupling between the surface state of the topological insulator and the proximitized Cr2Ge2Te6 layer is effective and strong enough to open the sizable exchange gap in the surface state.
215 - Rui Yu , Wei Zhang , H. J. Zhang 2010
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant
Instability of quantum anomalous Hall (QAH) effect has been studied as function of electric current and temperature in ferromagnetic topological insulator thin films. We find that a characteristic current for the breakdown of the QAH effect is roughl y proportional to the Hall-bar width, indicating that Hall electric field is relevant to the breakdown. We also find that electron transport is dominated by variable range hopping (VRH) at low temperatures. Combining the current and temperature dependences of the conductivity in the VRH regime, the localization length of the QAH state is evaluated to be about 5 $mu$m. The long localization length suggests a marginally insulating nature of the QAH state due to a large number of in-gap states.
The quantum anomalous Hall system with Chern number 2 can be destroyed by sufficiently strong disorder. During its process towards localization, it was found that the electronic states will be directly localized to an Anderson insulator (with Chern n umber 0), without an intermediate Hall plateau with Chern number 1. Here we investigate the topological origin of this phenomenon, by calculating the band structures and Chern numbers for disordered supercells. We find that on the route towards localization, there exists a hidden state with Chern number 1, but it is too short and too fluctuating to be practically observable. This intermediate state cannot be stabilized even after some smart design of the model and this should be a universal phenomena for insulators with high Chern numbers. By performing numerical scaling of conductances, we also plot the renormalization group flows for this transition, with Chern number 1 state as an unstable fixed point. This is distinct from known results, and can be tested by experiments and further theoretical analysis.
Van der Waals heterostructures of 2D materials provide a powerful approach towards engineering various quantum phases of matters. Examples include topological matters such as quantum spin Hall (QSH) insulator, and correlated matters such as exciton s uperfluid. It can be of great interest to realize these vastly different quantum matters on a common platform, however, their distinct origins tend to restrict them to material systems of incompatible characters. Here we show that heterobilayers of two-dimensional valley semiconductors can be tuned through interlayer bias between an exciton superfluid (ES), a quantum anomalous Hall (QAH) insulator, and a QSH insulator. The tunability between these distinct phases results from the competition of Coulomb interaction with the interlayer quantum tunnelling that has a chiral form in valley semiconductors. Our findings point to exciting opportunities for harnessing both protected topological edge channels and bulk superfluidity in an electrically configurable platform.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا